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Abstract

The Multiscale method is a class of algorithmic techniques for solving efficiently and
effectively large-scale computational and optimization problems. This method was
originally invented for solving elliptic partial differential equations and up to now it
represents the most effective class of numerical algorithms for them. During the last
two decades, there were many successful attempts to adapt the multiscale method
for combinatorial optimization problems. Whereas the variety of continuous sys-
tems’ multiscale algorithms turned into a separate field of applied mathematics, for
combinatorial optimization problems they still have not reached an advanced stage
of development, consisting in practice of a very limited number of multiscale tech-
niques. The main goal of this dissertation is to extend the knowledge of multiscale
techniques for the combinatorial optimization problems.

In the first part of this dissertation we formulate the principles of designing
the multilevel algorithms for combinatorial optimization problems defined on a sim-
ple graph (or matrix) model. We present the results for a variety of linear ordering
functionals (minimum linear arrangement/2-sum/bandwidth/workbound/wavefront
sum). Since our algorithms were developed for practical purposes we compared them
to many different heuristics: Spectral Sequencing, Optimally Oriented Decomposi-
tion Tree, Multilevel based, Simulated Annealing, Genetic Hillclimbing and other
(including their combinations). In almost all cases we observed significant improve-
ment of previous state-of-the-art results.

In the second part of this research we present a multiscale coarsening scheme
for minimizing a quadratic objective functional under planar inequality constraints.
The scheme is demonstrated on a graph drawing problem in which the economical
space utilization demand is evolved over the desired area rather than the widely used
force-directed method, which preserves the non-overlapping property of the graph
vertices. The non-overlapping property is automatically almost preserved as a result
of equidensity constraints defined over the entire area. This demonstrates the ability
of the algorithm to be used for solving a famous VLSI placement problem.
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CHAPTER 1

Introduction

1.1 Preface

Combinatorial optimization [41] is a wide class of problems, the central goal of
which can be usually formulated as finding the minimum or maximum of a function
under certain constraints, defined on some finite domain. Many of these problems
(which are of great theoretical and practical interest) are known to be NP-hard [49].
Moreover, the status of some problems is still unknown, e.g., when a function or
constraint becomes too complicated (as in the case of VLSI design [31], isomorphism
problems and several other well known tasks).

In this work we concentrate on developing linear time algorithms for large-scale
”real world” instances. Although the question ”how to define what is a real world
object?” is beyond the scope of this work, it is well known that in many practi-
cal problems the structure of such objects usually differs from the ones generated
randomly. Most of combinatorial optimization problems (COP) are motivated by
various engineering and applied science questions. Naturally, the instances for such
problems can be extremely large, thus, even if some quadratic time approximation
algorithm produces the solution with a rather optimistic rigorously proven approx-
imation ratio, in practice, it is still inapplicable.

It is more than arduous scientific task to generalize the definition of a ”real world”
instance. Quite often it turns to be less complicated as we significantly constrict
the set of instances or problems. However, it is believable that many ”real world”
instances are well structured or, in other words, possess some geometry. Examples
of huge classes of various well-organized objects are: finite element structures, power
low distributions, trees, etc., to mention just a few.

In this work we propose various strategies for designing linear time heuristic algo-
rithms for large-scale COP. These strategies will be demonstrated on some problems
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8 INTRODUCTION

which belong to the set of one- and two-dimensional layout problems and, hence,
will be empirically evaluated on ”real world” benchmarks.

In many problems it is often noticeable that, notwithstanding the fact that el-
ementary parts of the system have a very complicated (or even non-deterministic)
behavior, their ensembles represent much more structured systems. The multiscale
algorithms (MA) [14] successfully exploit these facts demonstrating a high quality
performance on practical data. The multiscale computational methodology is a
systematic approach to achieve efficient calculations of systems containing many de-
grees of freedom (like graph vertices, image pixels, discretized differential equations,
particles, etc.). From the relationships between the given microscopic parts of the
system (like graph, image, physical model, system of equations, etc.), the rules for
the system at increasingly larger scales are derived. The idea behind every MA is
to collect the relevant information regarding the system at different scales and then
to obtain the solution at microscopic scale by adapting the information inherited
at larger scales. Firstly, these algorithms were developed for continuous systems
and their discretizations. However, during the last two decades, there were many
successful attempts to adapt them for discrete optimization problems. Whereas the
variety of continuous systems’ MA turned into a separate field of applied mathemat-
ics, MA for COP still have not reached an advanced stage of development, consisting
in practice of a very limited number of multiscale techniques. The main goal of this
dissertation is to extend the knowledge of multiscale techniques for COP.

Overview of results

In the first part of this research (Chapters 2, 3 and 4) we formulate the principles
of designing MA for COP defined on a simple graph model. We present numerical
results for a variety of linear ordering functions (minimum p-sum, minimum band-
width, minimum workbound and minimum wavefront sum, see [39]). The common
heuristic principle is based on the idea that during coarsening each vertex may be
associated to more than just one aggregate according to some “likelihood” measure
rather than the usually used strict coarsening, where each coarse vertex is accu-
mulated from small subsets of fine vertices. The uncoarsening initialization, which
produces the first arrangement of the fine graph nodes, strongly relies on energy
considerations (unlike usual interpolation in classical Algebraic Multigrid). This
initial order is improved further by local strict minimization relaxation and possibly
by employing stochasticity.

In addition, we propose two general principles that can be used for different
linear ordering functionals: (1) the continuation approach in which functionals that
contain an evaluation of power p are successively approximated by a sequence of
similar functionals but with lower power; (2) a first approximation can be obtained
from the arrangement produced by one V-cycle of the minimum 2-sum problem
instead of using the popular spectral approach.

Since our algorithms were developed for practical purposes we compared them to
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many different heuristics : Spectral Sequencing [7, 34, 35, 50], Optimally Oriented
Decomposition Tree [6], Multilevel based [68, 59], Simulated Annealing [79, 77, 78],
Genetic Hillclimbing [81] and other (including their combinations). In almost all
cases we observed significant improvement of the results. In particular, the results
of the minimum 2-sum, the minimum bandwidth and the workbound problems were
improved on the average by about 30%-40%, while the running time on graphs with
up to 105 edges is less than one minute on a simple 1.7GHz PC. Our algorithms
have proven themselves to be very stable (i.e., small standard deviations) and of high
quality both as a first approximation and as more aggressive energy minimizers.

In the second part of this research (Chapter 5) we present a multiscale coarsen-
ing scheme for minimizing a quadratic objective functional under planar inequality
constraints. The scheme is demonstrated on a graph drawing problem in which the
economical space utilization demand is evolved over the desired area rather than the
widely used force-directed method, which preserves the non-overlapping property of
the graph vertices. In its current preliminary version it is only designed to provide
a correction to a given solution, rather than solving the entire problem.

The running time of all algorithms is linear, thus it can be applied to very large
systems. The implemented algorithms can be obtained at [90].

Thesis structure

This thesis begins with a brief background on classical geometric and algebraic
multiscale algorithms for linear and nonlinear systems (Chapter 1.2). The journal
articles on which this thesis is based on are presented as separate chapters.

1. Chapter 2: I. Safro, D. Ron and A. Brandt, ”Graph minimum linear arrange-
ment by multilevel weighted edge contractions”, Journal of Algorithms, vol.
60/1, pp. 24–41, 2006.

2. Chapter 3: I. Safro, D. Ron and A. Brandt, ”A multilevel algorithm for the
minimum 2-sum problem”, Journal of graph algorithms and applications, vol.
10/2, 2006.

3. Chapter 4: I. Safro, D. Ron and A. Brandt, ”Multilevel algorithms for linear
ordering problems”, extended version Technical Report MCS07-03, Computer
Science and Applied Mathematics, Weizmann Institute of Science (submitted
to the Journal of experimental algorithmics).

4. Chapter 5: D. Ron, I. Safro and A. Brandt, ”Fast multilevel solver for a
2-dimensional graph layout improvement”, In preparation.

The lists of references of all papers are unified into one list that appears at the
end of the thesis.
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1.2 Multigrid methods background

The following very brief survey on multiscale methods is intended for a reader who
needs either to refresh or to be introduced to the basic components and ideas of
these methods. Much more advanced explanations, rigorous analysis and references
can be found in the detailed surveys [14, 17, 107] and in the textbooks [22, 103].

1.2.1 History and intuition

The Multiscale method1 is a class of algorithmic techniques for solving efficiently and
efficiently large-scale computational and optimization problems. Any multivariable
problem defined in some space can have an approximate description at any given
length scale of that space: a continuum problem can be discretized at any given res-
olution; multiparticle system can be represented at any given characteristic length;
etc. The multiscale algorithm recursively constructs a sequence of such descriptions
at increasingly larger (coarser) scales, and combines local processing (relaxation) at
each scale with various inter-scale interactions. Typically, the evolving solution on
each scale recursively dictates the equations on coarser scales while supplying large-
scale corrections to the solutions on finer scales. In this way, large-scale changes
are effectively calculated on coarse grids, based on information previously gathered
from finer grids. Various fundamental computational problems in different disci-
plines (physics, chemistry, engineering, etc.) use the ideas of multiscale methods.

Multigrid methods were originally introduced for solving elliptic partial differ-
ential equations (PDE) and up to now they represent the most effective class of
numerical algorithms for them. The idea of multigrid methods was formulated by
Fedorenko and Bakhvalov [45, 46, 4] in the ’60s. However, the real power of these
methods was recognized only in the early ’70s by Brandt in his pioneering research
[10, 11]. During the last three decades, multigrid methods were adapted and gener-
alized for many computational tasks in various disciplines. Multigrid methods are
known to be very well scalable and efficient since they can solve a system with only
linear time and space complexity. Moreover, the nature of these algorithms allows
relatively easy distribution of the main parts of the task among parallel machines,
what makes these methods ideal for solving large-scale computational problems.

Before we turn to the description of the basic multigrid components, let us de-
scribe the general idea and intuition which lie behind these methods. Consider a
classical elliptic PDE problem for which the first multigrid algorithms were suc-
cessfully developed. The PDE is approximated (discretized) by a linear system of
equations when its physical domain Ω is approximated (or discretized) by a mesh.

1The multiscale method got several additional names like multigrid and multilevel. Usually
we will mention the most historically suitable name, as for example in case of a) the general
discussion - the most appropriate term will be ”mutiscale”; b) the classical optimization algorithms
- ”multigrid” and c) COP - ”multilevel”.
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Thus, every mesh over Ω defines a linear system

Ax = b , (1.1)

where A ∈ R
n×n is symmetric positive definite and x, b ∈ R

n. Let x̃ be an ap-
proximate solution of (1.1) and denote by e = x − x̃ the error vector and by
r = b−Ax̃ = Ae the vector of residuals. We use || · || for the l2 norm and || · ||/A for
the A-normalized l2 norm , i.e.,

||e||2 =
n∑

i=1

e2i , ||r||2/A =
n∑

i=1

r2
i∑n

λ=1 a
2
iλ

. (1.2)

The direct methods for solving such linear systems compute exact solution, but
the price paid in work and storage can be prohibitive for very large linear systems.
In contrast to the direct methods that attempt to solve the problem in one-shot
(like solving a linear system of equations 1.1 by finding the inverse of the matrix A),
iterative methods begin with an initial estimation for the solution and successively
improve it until the solution is accurate enough. However, in order to achieve the
high-quality approximation (which is very close to the exact solution), the number
of iterations in these methods grows up together with the total complexity and thus
become a quite ineffective tool for large-scale data (in particular, when there are no
special restrictions on the problem formulation). These iterative methods are also
called relaxation and they play a key role in the multigrid methodology. We will first
describe the classical relaxation algorithms and then explain how they demonstrate
the idea of multigrid.

Relaxation

Relaxation is a pointwise iterative2 method for solving (1.1), each iteration has the
form

x̃(k+1) = T x̃(k) + v, (1.3)

where the matrix T and the vector v are chosen so that the fixed point of the
equation x = Tx+ v is the solution to (1.1). Such a method is said to be stationary
if T and v are constant over all iterations. One way to obtain a suitable matrix T is
by splitting, in which A is written as A = M −N , where M is nonsingular. Taking
T = M−1N and v = M−1b, the generalized iteration will be

x̃(k+1) = M−1Nx̃(k) +M−1b. (1.4)

We will briefly describe the most relevant (for this work) traditional stationary
schemes: Jacobi and Gauss-Seidel.

2The iteration number will be denoted by a superscript in parentheses.
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• Jacobi method. The simplest choice for M in the matrix splitting is a
diagonal matrix, specifically the diagonal of A. Denote by D the matrix which
contains only zeros besides its diagonal copied from A. Therefore, fix M = D
and N = −(L + U), where U and L are strict upper- and lower-triangular
submatrices of A, respectively. If A has no zero diagonal entries, so that D is
nonsingular, then we obtain the iterative scheme known as the Jacobi method:

x̃(k+1) = D−1(b− (L+ U)x̃(k)) . (1.5)

Thus, the pointwise x̃ correction will be the following:

x̃
(k+1)
i =

bi −
∑

j 6=i aijx̃
(k)
j

aii
. (1.6)

The convergence speed of this method is usually slow and it requires double
memory for x̃ to keep the last two iterations. On the other hand, Jacobi is
preferable in applications when each entry of x̃(k+1) must be based on the
entries of the previous iteration only.

• Gauss-Seidel method. One reason for the Jacobi slow convergence is that it
does not use the latest information available, i.e., new entries are involved only
after the entire sweep has been completed. The Gauss-Seidel method remedies
this drawback by taking each new component of the solution immediately
after its update. Let the splitting be M = D + L and N = −U . Thus, the
corresponding iteration and pointwise formulas will be

x̃(k+1) = D−1(b− Lx̃(k+1) − Ux̃(k)) and (1.7)

x̃
(k+1)
i =

bi −
∑

j<i aijx̃
(k+1)
j −∑j>i aijx̃

(k)
j

aii
. (1.8)

The updating of the unknowns must be done successively, in contrast to the
Jacobi method, in which the unknowns can be updated in any order. In the
view of the possible parallelization of the algorithm, this is an undoubtless
advantage of the Jacobi relaxation. Besides of the faster convergence, the
Gauss-Seidel method wastes less storage space than Jacobi.

All these stationary iterative methods converge x̃(k) to the solution x = A−1b if and
only if the spectral radius ρ(M−1N) < 1.

It is important to remark that: (1) a common feature of the mentioned and many
other types of relaxation is that at each step some corrections to x̃ are calculated
based on a small number of unknowns, i.e., the relaxation is a local process, which
basically averages out each unknown with the values of its neighboring unknowns,
e.g., (1.6) and (2) after a small number of relaxation sweeps on system (1.1), the
remained error becomes smooth.
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The basic observation

The basic intuition for the multigrid methods is concerned with the meaning of the
relaxation. In fact, the relaxation is a process of averaging, in which the highly-
oscillatory error modes are removed. A one-dimensional example of a simple relax-
ation (whose basic step is xi = (xi−1 + xi+1)/2 which is the discretization of the
1-dimensional Poisson equation, i.e., this is a special case of Jacobi relaxation with
bi = 0) is shown in Figure 1.1. The initial data may contain many highly-oscillatory
components that disappear while applying more and more relaxation sweeps. In
other words, the relaxation is actually a ”smoother” which reduces the error compo-
nents of increasingly larger scales as the averaging process proceeds (see the results
after 5,10 and 500 sweeps in Figure 1.1): the highly-oscillatory components are
removed very fast during the first sweeps, while the smooth error modes are be re-
moved very slow. Thus, after a small number of relaxation sweeps, there is actually
no need to describe the system at the same resolution (or discretization) as has been
done before the relaxation, in fact, the relaxed data can be effectively characterized
by a coarser resolution with fewer variables.

Conclusion: A suitable relaxation can always reduce the information content of
the error (by smoothing it), and quickly make it approximable by far fewer variables
(which are related to the smooth error modes).

The above conclusion is very general and holds even for quite general nonlinear
systems. As a result of this conclusion, the following natural question can be asked:
when should we stop the relaxation and continue by describing the system with
fewer variables without loosing much information? The answer to this question
is based on the fact that the convergence of the relaxation must be slow when the
individual residuals do not show the true magnitude of error, i.e., when ||r||/A ≪ ||e||.
The converse is also true: if the convergence of a suitable relaxation is slow, then
|r||/A = ||Ae||/A ≪ ||e|| must hold. Since the deeper the condition ||Ae||/A ≪ ||e|| is
satisfied the more special must be the type of the error ||e||. In practice, it is enough
to perform up to 3 sweeps of relaxation in order to smooth the system.

1.2.2 The hierarchy of coarser problems

Following a small number of relaxation sweeps, the remaining error e, and hence
also the solution x̃ itself can be approximated by a coarser system with fewer new
variables {xci}mi=1. A first issue in any coarsening scheme, whether for linear or non-
linear system, is how to define the coarse variables. During this work two coarsening
schemes will be mentioned: ”geometric multigrid” and ”algebraic multigrid”.

Geometric multigrid (GMG). In the classical case of this scheme, where the
fine-level set x is defined on a well-structured grid, the coarse set xc is naturally
defined in terms of coarsening that grid, for example by omitting from it any other
matrix row and column as in Figure 1.2. This scheme is used in Chapter 5.
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Figure 1.1: An example of a simple relaxation process.

Algebraic multigrid (AMG). Unlike the geometric multigrid coarsening (in
which the coarse variables are predefined at all scales regardless of the problem
input), AMG does not have a predefined set of coarse variables. The set of coarse
variables is chosen as a subset of the set of fine variables V ; or, more generally,
each coarse variable is compounded of fractions of a small number of fine variables.
This aggregation process is performed around each fine variable (which entirely
contributes itself to the respective aggregate) chosen into the set C. This set must
be constructed so that all other fine variables in F = V \C will be ”strongly coupled”
to C (as explained in Section 1.2.3).

Coarse equations. There are several ways to construct the coarse equations
which describe the relationship between the coarse variables. An inexpensive direct
derivation is available in GMG, in which the same structure of the original equations
is preserved. Relatively inexpensive algebraic derivations of coarse equations are
obtained via the definition of an explicit coarse-to-fine interpolation operator ↑fc
such that x ≈↑fc xc. More details are supplied in Section 1.2.3.
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Figure 1.2: Standard geometric coarsening scheme.

Multilevel cycles. Having constructed the coarse-level variables and equations,
they are then solved by a similar procedure: a small number of relaxation iterations
followed by approximating the remaining error with a still coarser system. This
recursively defines the multilevel cycle, which time and space complexity is compa-
rable to that of just a small number of relaxation sweeps over the finest level. A
basic rule that every part of the multiscale algorithm (interpolation operator, relax-
ation, etc.) must satisfy is stationarity, meaning that if x̃ is already at the desired
minimum (in a case of optimization problem), the algorithm will never move away
from it.

Multiscale interpretation

The behavior of any physical system can be interpreted differently while one ob-
serves it at different scales. Not rarely it is rather difficult to understand the general
behavior of a system when only its elementary parts and their relationships are taken
into account. At the same time, observing the ensembles of these elementary parts
can make comprehension of the global picture a much easier task. For example,
consider a digital representation of an image as a matrix of pixels. Staring concen-
tratively many times at specific image regions (such that separate pixels would be
distinguishable), it is almost impossible to understand the image in general. How-
ever, it is enough to look at the entire image (without special attention to separate
pixels) and the general picture will be evident. Such a division of our attention
into different scales is the main postulate of the multigrid methods idea. It can be
presented in the following algorithmic structure. For the solution of a problem P ,
we define a hierarchical set of problems P = P0, P1, ..., PK where Pi is in some sense
a coarser approximation of Pi−1 in the range 1 ≤ i ≤ K. The solution Πi to Pi is
closely related to the solution Πi−1 of Pi−1, and moreover, it is easier to solve Pi
than Pi−1. The basic strategy is to start with finding a solution ΠK for PK and
then, level by level, construct Πi−1 from Πi for each i.

The relaxation is also a most important computational part of the task. During
each call, this local process will affect only a very limited number of current scale
elementary components (like pixels, particles, graph vertices, etc.). At each scale
the relaxation will be responsible for smoothing the respective finer scale error.
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The main parts of a multigrid algorithm (MA) can be summarized as follows:

• A. Define the notion of elementary (or microscopic) component of the problem
and the set of relations among them;

• B. Define the next (coarse) scale problem;

• C. Define an appropriate relaxation process which reduces the error of some
approximate solution;

• D. Define a method to transfer information between coarse and fine scales.

Let us see how these tasks can be joined to construct the basic multigrid algorithms
for quadratic optimization which is related to our COP problems. The classical mul-
tilevel approach is described bellow, while the new particular algorithmic ingredients
for solving the COP will be presented in 1.3.

1.2.3 Correction scheme cycle

The general unconstrained quadratic optimization problem can be formulated as
follows. Assume A ∈ R

n×n and x, b ∈ R
n. Our goal is to minimize the quadratic

form
1

2
xTAx− bTx , (1.9)

where A is symmetric positive definite (however, this condition is not obligatory in
more complicated cases). The minimizing vector x satisfies the same exact linear
system as in (1.1). Thus, our discussion below will focus on fast multiscale solvers
for (1.1) with the same notation.

Having the problem (1.9), the above demand A is accomplished – the elementary
components of the problem are defined as {xi}ni=1 and the (i, j)-th entry aij is the
corresponding relationship between xi and xj.

Usually, while constructing the hierarchy of the coarse scales, the MA involves at
different scales similarly defined (or very closely related) problems. Thus, the natural
way to introduce the next coarse scale problem is to reduce the dimensionality of
the original problem. The superscript index c in Ac, xc, x̃c, ec, rc will refer to the
similarly defined coarse scale matrix and vectors (as demanded in B). In other words,
the coarse scale will be represented by lower dimensional matrix A ∈ R

m×m and
corresponding vectors in R

m, where m is a fraction of n, typically n/8 ≤ m ≤ n/2.
The information between the coarse and the fine scales (see demand D) will be
transferred by interpolation and restriction operators denoted by ↑fc : R

m −→ R
n

and ↑cf : R
n −→ R

m, respectively. By transferring the information from fine to
coarse scales we usually mean the creation of a new problem, while the backward
process will project the solution from the coarse scale to the fine ones.

In the first part of our studies (Chapters 2, 3 and 4) the notion of microscopic
component refers to the graph vertex and the relationship between two components
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is defined by the corresponding weighted edge. The elementary component of the
second part’s system (Chapter 5) will be a variable which determines the movement
needed for a small subset of vertices for solving a correction to the two-dimensional
graph layout problem.

As it was observed, the key role in multigrid methods is intended for the relax-
ation process (mentioned as demand C), or, more precisely for the interplay among
the relaxation, the interpolation and the restriction operators. Using the terms of
fine and coarse scales, the explanation of relaxation follows. At each scale it must
decrease high frequency error obtained before and after transferring the information
between scales. The error which is not efficiently reduced by this smoothing is typ-
ically well approximated by a next coarser system. The error on the coarse system,
which is smooth on the fine level, turns out to contain again high frequency error
with respect to the coarser system. The remained error can be approximated by a
coarser system with much smaller number of variables while on the coarsest grid a
direct solver can be applied.

We will demonstrate here one basic MA called correction scheme. In terms of
solving (1.1) the algorithm can be summarized as follows:

Multigrid(A, x̃, b)
If A is small enough

Solve Ax̃ = b directly
Else

Apply ν1 relaxation (error smoothing) sweeps on Ax̃ = b
Define Ac, ec = 0 and rc =↑cf r
Multigrid(Ac, ec, rc)
Correct x̃ = x̃+ ↑fc ec
Apply ν2 relaxation (error smoothing) sweeps on Ax̃ = b

Return x̃

The ν = ν1 +ν2 sweeps performed in this algorithm on any of its scales are expected
to reduce the corresponding error components (those visible on that grid but not on
the coarser level) by the factor µν , where µ is the smoothing factor, which for solving
some simple PDEs can be rigorously calculated by Fourier analysis [103, 19]. Since
all grids are so traversed, the cycle should heuristically reduce all error components
at least by the factor µν . Thus µ can serve as a practical predictor of the multigrid
performance one should be able to obtain. The number of relaxation sweeps ν is
also an indicator of the cycle complexity.

Coarse variables. When the geometry of the problem is known we can choose a
coarser grid by eliminating points in a geometrically-regular pattern as is presented
in Figure 1.2. Let us see in more details the AMG case for which we refer in Chapters
2, 3 and 4.

The procedure for choosing C, the set of coarse variables, contains only two
sweeps through all variables: (0) decide if A has weak connections (aij) and possibly



18 INTRODUCTION

remove them (1) pass through all fine variables transferring to C those variables
that still are not ”strongly connected” to already chosen. The strength of the con-
nection between F-points and their seeds is defined by the parameter Q ∈ (0, 1]. In
particular, i ∈ F is ”strongly connected” to C if

∑
j∈C aij∑
j∈V aij

≥ Q . (1.10)

and, therefore, should not be added to C.
Coarse equations. There are several ways to construct approximate coarse

equations. Non interpolation-based derivation is usually available in GMG. As it
was shown in the correction scheme algorithm, to approximate the error e = x− x̃
left after several relaxations, its equation Ae = r is defined on the coarse level by
Acec = rc. The right-hand side of which is calculated by rc =↑cf r, where ↑cf is
a fine-to-coarse transfer operator, called restriction. ↑cf r is a coarse-grid function
whose value at each point is typically a weighted average of values of r at neighboring
fine-grid points. The matrix Ac can be obtained in a similar discretization of the
same problem on a grid with larger mesh size.

The correction to x̃ is obtained by

x̃ = x̃+ ↑fc ec , (1.11)

where ↑fc is a coarse-to-fine interpolation matrix. At each fine-grid point the value
of ↑fc ec is interpolated from values ec at neighboring coarse-grid points. Linear
interpolation can be used in many cases.

One of the most traditional approaches for derivation of the coarse equations Ac
in AMG is the Galerkin operator

Ac =↑cf A ↑fc , (1.12)

which projects the fine system of equations to the coarser scale. Usually, for symmet-
ric and positive definite matrices A the restriction mapping is defined as the trans-
pose of the interpolation ↑cf= (↑fc )T . The (i, J)-th entry of ↑fc represents the strength
of the connection between fine variable i and coarse variable J and ei = (↑fc ec)i. The
entries of ↑fc are called interpolation weights and they describe both the coarse-to-fine
and fine-to-coarse variable relations.

AMG principles are widely employed for solving discretized PDEs on both struc-
tured and unstructured grids, in image processing, clustering, various graph algo-
rithms and for many other goals. Its main advantage is that the coarsening process
is fully automatic and this is the major reason for AMG flexibility in adapting itself
to specific requirements of the problem and robustness despite using very simple
pointwise smoothers.

Cycle variations

The scheduling of the multiscale recursive calls and returns can be defined in several
forms. The simplest form of the multigrid algorithm is called a V-cycle. Starting at
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FMG−schemeV−cycle W−cycle

Figure 1.3: Schematic example of different cycle models. In all examples there are
five coarse levels. The W-Cycle scheduling has cycle index 2. Each solid point
represents the respective coarse level at some time. The leftmost top point is the
start of the cycle at the finest level.

the finest grid, a number of recursive calls reduces the problem size and then comes
back bringing an approximation from the next coarser level to the finer one (see
Figure 1.3, V-cycle).

A more advanced form is called a W-cycle. It has a parameter constant (called
cycle index), which declares how many times should the process visit the next coarse
level before returning to the next finer level. We present the scheme of the W-cycle
with cycle index 2 in Figure 1.3, W-cycle. The V-cycle is the special case of the
W-cycle with cycle index 1.

The cycle forms described above can be applied to any first approximation given
on the finest grid. Another way is to obtain the first approximation by interpolation
from the solution of the next coarser grid, which has been previously calculated by
a similar algorithm. The last strategy is called a Full multigrid cycle (FMG). A
typical FMG algorithm, with one V-cycle per refinement, is shown in Figure 1.3,
FMG-scheme.

1.2.4 Nonlinear systems

The most popular algorithm for nonlinear systems is called the Full Approximation
Scheme (FAS). Denote by N(x) the nonlinear fine level system

N(x) = b (1.13)

and by N c(xc) the corresponding coarse-level nonlinear system. In particular, if the
system N(x) = b represents a discretization of some continuum equations, then a
similar discretization can be obtained for the coarse grid. If x̃ is the current fine-
level approximation, and hence r = b−N(x̃) is the current residual, then a general
coarsening scheme is to approximate the fine-level residual equations

N(x)−N(x̃) = r (1.14)

by the nonlinear coarse system

N c(xc)−N c(x̃c) =↑cf r , (1.15)



20 INTRODUCTION

where ↑cf is a fine-to-coarse transfer as defined previously for linear systems and
x̃c =↑cf x̃. In this case the error is still smoothed by the relaxation process and thus
approximated by the residual equations, so after obtaining a solution xc to (1.15), it
is the correction xc− x̃c which should be interpolated, i.e., the coarse grid correction
to the fine level is

x̃new = x̃+ ↑fc (xc − x̃c). (1.16)

This scheme, introduced by Brandt in [11], is called Full Approximation Scheme,
because it gives directly an equation in terms of the full solution xc and not in terms
of the correction ec. Defining

τ c = N c(x̃c)− ↑cf N(x̃) , (1.17)

Eq. (1.15) can be written as N c(xc) =↑cf b + τ c and can be used recursively at all
levels.

In Chapter 5 we have combined the FAS with the regular geometric multigrid.
The problem formulated there represents a quadratic minimization functional under
planar linear inequality constraints. These inequality constraints are coarsened by
the FAS as a highly non-linear part of the problem.

1.3 New multilevel techniques for graph problems

During the last two decades there were many attempts of employing multilevel
strategies for solving combinatorial optimization problems [17, 95, 64, 105, 106, 104,
65, 1]. Since the most frequent branches on which the multilevel algorithms were
applied were VLSI design [27, 31, 29, 32, 26], graph optimization problems (with a
special attention on the partitioning problem [33, 2, 95, 65, 87, 64, 8, 56, 66, 5, 1]),
and several others, the most of the multilevel schemes were developed for a simple
graph model. We will describe the most basic components of our multilevel scheme
for the linear ordering problems and the main difference between our and previous
approaches.

Coarsening

Coarsening variables. Typically, almost all previously developed multilevel schemes
for simple graphs possess exactly the same coarsening. It is carried out by matching
groups (usually pairs) of vertices together and representing each group with a single
vertex in the coarsened space (e.g. matching [64, 105, 106, 104], first choice [31],
etc.). The main difference between our approach to most other multilevel approaches
(related to various graph optimization problems) is the coarsening scheme. While
the previous approaches may be viewed as strict aggregation process, our coarsening
is based on the AMG principles and it is actually a weighted aggregation in which
every node may be divided into fractions, and different fractions belong to differ-
ent aggregates. This enables more freedom in solving the coarser levels and avoids
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making hardened local decisions, such as edge contractions, before accumulating the
relevant global information.

One of the important achievements of our work is that this coarsening is very
general and it turns to be suitable for all the different functionals we have tested.
This fact can be explained by the way the hierarchy of problems is constructed:
variables are eliminated within the coarsening phase only and exactly when they
show strong dominant connections to the remaining (non-eliminated) variables, this
in turn guarantees that the solution of the eliminated variables is naturally obtained
once the non-eliminated variables are solved.

Coarse equations. In our linear ordering algorithms we have used the, so called,
weighted aggregation scheme introduced in [97] for image segmentation problems.
The classical AMG interpolation matrix ↑fc (of size |V | × |C|) is defined by

(↑fc )iJ =






wij/
( ∑
k∈N(i)

wik
)

for i ∈ F, j ∈ N(i)

1 for i ∈ C, j = i
0 otherwise ,

(1.18)

where N(i) be a reasonably small subset of C-variables strongly connected to i.
(↑fc )iJ thus represents the likelihood of i to belong to the J-th aggregate (coarse
node). The edge connecting two coarse aggregates I and J , wcIJ , is assigned with
the weight wcIJ =

∑
k 6=l(↑fc )kIwkl(↑fc )lJ . This coarsening scheme is used in Chapters

2, 3 and 4.

The coarsest level. Solving the appropriate functional at the coarsest level is
performed by trying all possible arrangements. Since the amount of work invested
at the coarsest levels is negligible compared with that of the finest levels, many
solutions can in fact be kept at each level whose graph is relatively small with
respect to the finest level graph.

Disaggregation

Initialization. The various algorithms thus differ in the disaggregation process
which follows by projecting to a finer level the final arrangement obtained on a
coarser level. The initial fine level arrangement is obtained by direct projection of
the coarse variables to a fine level and by minimizing the local energy contribution
of the remained fine vertices. This initial fine level arrangement is being further
improved by applying different local reordering methods.

Compatible and Gauss-Seidel relaxations. Compatible relaxation was first
developed for stochastic Monte-Carlo processes in [20]. We have used the compat-
ible relaxation in Chapters 2, 3 and 4 as an energy minimizer immediately after
the coarse-to-fine interpolation stage. The role of variables in linear ordering prob-
lems play the graph vertices’ positions along a line. Having a presumably good
optimized coarse linear ordering functional, the coarse vertices were fixed invariant
during the Gauss-Seidel relaxation (in which each node minimizes its contribution
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to the total energy), while their fine neighbors were compatible updated each time
improving their contribution to the global optimization functional. The empirical
convergence and the improvement of the respective functional in almost all cases
were the additional evidence of the algorithm’s correctness.

Minimization and postprocessing. Since we are dealing with a discrete prob-
lem, the ordering obtained after relaxations should be improved by some discrete
minimization process which ”converges” to a local minimum (that is achieved by
Gauss-Seidel relaxation in the continuous problems). Besides simple greedy per-
vertex local improvements, we have developed a simultaneous minimization of sev-
eral vertices called Window Minimization. This procedure was adapted for various
functionals and plays a crucial role both as a minimizer at all levels of the algorithm
and as a postprocessing which produces a final solution at the finest level.

Finally, our minimization and postprocessing are intensified by Simulated An-
nealing which is a general method to escape local minima (described below). In the
multilevel framework SA is aimed at searching only for local changes that guarantee
the preservation of large-scale solution features inherited from coarser levels. Our
postprocessing can be used as an integrated part in various algorithmic frameworks
(as used for the spectral approach, see Chapter 3).

1.4 Multilevel simulated annealing

A general method to escape false local minima and advance to lower costs is to
replace the strict minimization by a process that still accepts each candidate change
which lowers the cost, but also assigns a positive probability for accepting a can-
didate step which increases the cost of the arrangement. The probability assigned
to a candidate step is equal to exp(−δ/T ), where δ > 0 measures the increase in
the arrangement cost and T > 0 is a temperature-like control parameter which is
gradually decreased towards zero. This process, known as Simulated Annealing
(SA) [67], in large problems would usually need to apply very gradual cooling (de-
crease of temperatures), making it extremely slow and inefficient for obtaining global
optimum.

In the multilevel framework, however, the role of SA is somewhat different. At
each level it is assumed that the global approximate solution has been inherited from
the coarser levels, and thus only local, small-scale improvements are needed. We
have developed a multilevel simulated annealing tool for the linear ordering problems
in which the search space for some improvement at every step is small enough to
be very local. For that purpose, we have started at relatively high T , lowered it
substantially at each subsequent sweep until strict minimization is employed.

Repeated heating and cooling is successively employed for better search over
the local landscape. This search can be further enhanced by the introduction of a
“memory” like tool consisting of an additional permutation which stores the Best-So-
Far (BSF) observed arrangement. Henceafter, the BSF is being occasionally updated
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by the procedure called Lowest Common Configuration (LCC) [18] which enables
the systematic accumulation of sub-permutations into it over a sequence of different
arrangements, such that each BSF sub-permutation exhibits the best minimal sub-
order encountered so far. The cost of the obtained BSF is at most the lowest cost
of all the arrangements it has observed, and usually it is lower. The use of LCC
becomes more important for larger graphs, where it is expected that the optimum
of a subgraph is only weakly dependent on other subgraphs. The BSF is improved
by the LCC procedure which updates parts of it taken from the new arrangements
reached right after each heating-cooling procedure. All these accumulated updates
are thus stored at the BSF which actually provides the current calculated minimum.
The complete description of the LCC algorithm is given in Chapter 2.
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CHAPTER 2

Graph minimum linear arrangement by multilevel weighted

edge contractions

2.1 Introduction

The Minimum Linear Arrangement (MinLA) problem belongs to a large family of
graph layout problems such as : Bandwidth, Cutwidth, Vertex Separation, Profile
of Graph, Sum Cut etc. Commonly for general graphs these problems are NP-hard
and their decision versions are NP-complete [48].

Originally the MinLA problem was formulated in 1964 by Harper in [54]. His aim
was to design error-correcting codes with minimal average absolute errors on certain
classes of graphs. The MinLA may also be motivated as a model used in VLSI design,
where at the placement phase it is required to minimize the total wire length [30].
Additionally, the MinLA appears in several biological applications, graph drawing,
reordering of large sparse matrices and other fields (see [39, 70, 57, 96]).

Since the MinLA has a practical significance, many heuristic algorithms were
developed in order to achieve near optimal solution. Among the most successful
are Spectral Sequencing [62], Optimally Oriented Decomposition Tree [6], Multilevel
based [68], Simulated Annealing [79, 78], Genetic Hillclimbing [81] and some of their
combinations. All these heuristics were tested on the test suite that was compounded
by Petit [79], some have proven themselves superior in solution quality while other
in execution time.

In this paper we present a new multilevel algorithm for the MinLA problem
based on the Algebraic MultiGrid scheme (AMG) [15, 16, 12, 22, 89, 99, 100]. The
main objective of a multilevel based algorithm is to create a hierarchy of problems
(coarsening), each representing the original problem, but with fewer degrees of
freedom. General multilevel techniques have been successfully applied to various

25
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areas of science (e.g. physics, chemistry, engineering, etc.) [17, 14]. AMG methods
were originally developed for solving linear systems of equations resulting from the
discretization of partial differential equations. Lately they have been applied to
various other fields, yielding for example a novel method for image segmentation [97].
In the context of graphs it is the Laplacian matrix that represents the related set of
equations. The main difference between our approach to other multilevel approaches
(not necessarily related to the MinLA but also to other graph optimization problems)
is the coarsening scheme. While the previous approaches may be viewed as strict
aggregation process, the AMG coarsening is actually a weighted aggregation. In a
strict aggregation process (also called edge contraction or matching of nodes) the
nodes of the graph are blocked into small disjoint subsets, called aggregates. By
contrast, in weighted aggregation each node can be divided into fractions, and
different fractions belong to different aggregates. In both cases, these aggregates
will form the nodes of the coarser level. As AMG solvers have shown, weighted,
instead of strict aggregation is important in order to express the likelihood of nodes
to belong together; these likelihoods will then accumulate at the coarser levels of the
process, automatically reinforcing each other where appropriate. This enables more
freedom in solving the coarser levels and avoids making hardened local decisions,
such as edge contractions, before accumulating the relevant global information, while
a strict aggregation may lead to inconsistency between local and global pictures.

To escape false local minima we have used the general method of Simulated
Annealing (SA) [67]. By introducing a temperature like parameter, moves which in-
crease the cost function one wants to minimize are accepted with some non-vanishing
probability. These algorithms are usually extremely inefficient, since they require
exponential slow temperature decrease to approach the true minimum. In the mul-
tilevel framework, however, SA is aimed at searching for local changes with rapid
cooling at each level that guarantees the preservation of large-scale solution features
inherited from coarser levels.

Our experimental results show that the Algebraic Multilevel framework can be
used for the MinLA problem to obtain high quality results in linear time. Our
algorithm actually provides the best results (excluding one case) compared to [6,
38, 79, 78, 39, 81, 68], while its speed (despite its unoptimized current state) is
much better than the fastest algorithm [68].

The problem definition and its generalization are described in Section 2.2. The
multilevel algorithm along with additional optimization techniques are presented
in Section 2.3. A comparison of our results with various other works is finally
summarized in Section 2.4.

2.2 Problem definition and generalization

Given a weighted graph G = (V, E), where V = {1, 2, ..., n}, denote by wij the
non-negative weight of the edge ij between nodes i and j (if ij /∈ E then wij = 0).
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The purpose of the MinLA problem is to find a permutation π of the graph nodes
such that the cost

∑
ij∈E wij|π(i) − π(j)| is minimal. In the generalized form of

the problem that emerges during the multilevel solver, each vertex i is assigned
with a length (or volume), denoted vi. The task now is to minimize the cost∑

ij∈E wij|xi − xj|, where xi = vi

2
+
∑

k,π(k)<π(i) vk, i.e., each vertex is positioned at
its center of mass capturing a segment on the real axis which equals its length (see
Figure 2.1). The original form of the problem is the special case where all the lengths
are equal.

w

32 214 2

Figure 2.1: An example for the generalized form of the problem. Each node captures
a segment on the real axis. Its length is written above it. If, for instance, the edge
between the first node to the fifth one has weight w, then its contribution to the
cost of the linear arrangement is w · 8.5 .

We will not discuss here theoretical complexity issues, such as lower and upper
bounds for the solution cost. We are not interested in the worst possible cases,
which are extremely non-representative. Our focus is on practical high-performance
algorithm, such that in most practical cases would yield a good approximation to
the optimum at low computational cost. Typically, the multilevel algorithms exhibit
linear complexity, i.e., the computational cost in most practical cases is proportional
to |V |+ |E|.

2.3 The algorithm

In the multilevel framework a hierarchy of decreasing size graphs : G0, G1, ..., Gk

is constructed, see Figure 2.2. Starting from the given graph, G0 = G, create by
coarsening the sequence G1, ..., Gk, then solve the coarsest level directly, and finally
uncoarsen the solution back to G. This entire process is called a V -cycle.

As in the general AMG setting, the choice of the coarse variables (aggregates), the
derivation of the coarse problem which approximates the fine one and the design of
the coarse-to-fine disaggregation (uncoarsening) process are determined as described
bellow.

2.3.1 Coarsening: Weighted Aggregation

Coarsening will be interpreted here as a process of weighted aggregation (or of
weighted edge contraction) of the graph nodes to define the nodes of the next coarser
graph. In a strict aggregation process (also called edge contraction or matching of
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Figure 2.2: The Scheme of a V-cycle. Solid arrows stand for coarsening, dotted for
uncoarsening.

nodes) the nodes are blocked in small disjoint subsets, called aggregates. Two nodes
i and j would usually be blocked together (put in the same aggregate) only if their
coupling is strong, meaning that wij is comparable to min{maxkwik,maxkwkj}. In
weighted aggregation, each node can be divided into fractions, and different frac-
tions belong to different aggregates. In both cases, these aggregates will form the
nodes of the coarser level, where they will be blocked into larger aggregates, forming
the nodes of a still coarser level, and so on. As AMG solvers have shown, weighted,
instead of strict, aggregation is important in order to express the likelihood of nodes
to belong together; these likelihoods will then accumulate at the coarser levels of the
process, automatically reinforcing each other where appropriate. Strict aggregation,
by contrast, may run into a conflict between the local blocking decision and the
larger-scale picture.

The construction of a coarse graph from a given one is divided into three stages:
first a subset of the fine nodes is chosen to serve as the seeds of the aggregates
(the nodes of the coarse graph), then the rules for interpolation are determined,
thereby establishing the fraction of each non-seed node belonging to each aggregate,
and finally the strength of the connections (or edges) between the coarse nodes is
calculated.

Coarse Nodes. The algebraic representation of a graph is given by its Laplacian
A (a |V | × |V | matrix), whose terms are defined by

Aij =






−wij for ij ∈ E, i 6= j
0 for ij 6∈ E, i 6= j∑

k 6=iwik for i = j .
(2.1)

The construction of the set of seeds C and its complement, denoted by F , is
guided by the principle that each F -node should be “strongly coupled” to C. Also,
we will include in C nodes with exceptionally large volume, or nodes expected (if
used as seeds) to aggregate around them exceptionally large volumes of F -nodes.
We start with an empty set C, hence F = V , and then sequentially transfer nodes
from F to C, employing the following steps.
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Let wS(ij) denote the normalized weight of an edge ij with respect to the set of
nodes S and to the vertex i, defined by

wS(ij) =
wij∑

k∈S

wik
. (2.2)

As a measure of how large an aggregate seeded by i ∈ F might grow, define its
future-volume ϑi by

ϑi = vi +
∑

j∈F

vj ·min(1,
dj
ρj
· wV (ji)) , (2.3)

where dj is the degree of j and ρj = min(r, ⌈Q · dj⌉) is a rough estimate of the
number of C nodes to which node j will be connected, the threshold Q (see below)
and the coarse neighborhood size r (see Appendix B) being parameters. The basic
idea is that each F -node will eventually be associated with only a limited number
(the coarse neighborhood size r) of C-nodes, thus the relative connection wV (ji) of
each j ∈ F to i is usually amplified by

dj

ρj
, as for the cases where r < dj, the volume

vj is divided among less neighbors. Nodes with future-volume larger than η times
the average of ϑ should automatically be included in C as most “representative”. (In
our tests η = 2). The insertion of additional fine nodes to C depends on a threshold
Q (in our tests Q = 0.4) as specified by Algorithm 1. That is, a fine node i is added
to C if its relative connection to C is not strong enough, i.e., smaller than Q. Also,
vertices with larger values of ϑ are given higher priority to be chosen to C.

Algorithm 1: CoarseNodes(fine level F)

Parameters: Q, η

C ← ∅, F ← V

Calculate ϑi for each i ∈ F
C ← nodes with ϑ > η · (average of ϑ)
F ← V \ C
Recalculate ϑi for each i ∈ F
Sort F in descending order of ϑ
Go through all i ∈ F in decreasing order of ϑ

If

(
∑
j∈C

wij/
∑
j∈V

wij

)
≤ Q then move i from F to C

Return C

For convenience we are currently using a library O(n · log(n)) sorting algorithm.
However, since no exact ordering is really needed, this can be replaced by a rough
sort which has O(n) complexity. This remark will be valid for all cases where we
have used exact sort.



30 Graph minimum linear arrangement by multilevel weighted edge contractions

The Coarse Problem. The chosen set C of seeds becomes the set of coarse
level nodes. Define for each i ∈ F a coarse neighborhood Ni = {j ∈ C, wij ≥ αi},
where αi is determined by the demand that |Ni| does not exceed the allowed coarse
neighborhood size r chosen to control complexity. (For typical values of r consider
Appendix B). The classical AMG interpolation matrix P (of size |V |×|C|) is defined
by

Pij =






wNi
(ij) for i ∈ F, j ∈ Ni

1 for i ∈ C, j = i
0 otherwise .

(2.4)

Pij thus represents the likelihood of i to belong to the j-th aggregate. The
Laplacian of the coarse graph Ac can be calculated by the so called Galerkin coars-
ening Ac = P TAP . Here, however, we follow the approximated scheme used in
[97], namely, the edge connecting two coarse aggregates i and j, wcij, is assigned
with the weight wcij =

∑
k 6=l PkiwklPlj. The volume of the i-th coarse aggregate is∑

j vjPji. Note that during the process of coarsening the total volume of all vertices
is conserved.

2.3.2 The coarsest level

Solving the coarsest level, which consists of no more than 8 nodes (otherwise a still
coarser level should be introduced for efficiency) is performed directly by simply
trying all possible arrangements and choosing the minimal one.

2.3.3 Disaggregation (uncoarsening)

Having solved a coarse problem, the solution to the next-finer-level problem is ini-
tialized by first placing the seeds according to the coarse order and then adjusting
all other F -nodes while aiming at the minimization of the arrangement cost. This
approximation is subsequently improved by several relaxation sweeps, first compat-
ible, then regular with or without additional stochastic elements, as explained below
and summarized in Algorithm 2.

Initialization

Given is the linear arrangement of the coarse level aggregates in its generalized form,
where the center of mass of each aggregate j ∈ C is positioned at xj along the real
axis. We begin the initialization of the fine level arrangement by letting each seed
inherit the position of its respective aggregate. Define V ′ ⊂ V to be the subset
of nodes that have already been placed, i.e., initially V ′ = C. Then proceed by
positioning each fine node i ∈ V \ V ′ at the coordinate yi in which the cost of the
arrangement, at that moment when i is being placed, is minimized. The sequence in
which the nodes are placed is roughly in decreasing order of their relative connection
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to V ′, that is, the nodes which have strong connections to V ′ compared with their
connections to V are placed first. To be precise, the coordinate yi is located within
the minimization segment (possibly containing a single point) defined by

{y : |
∑

yj<y, j∈V ′

wij −
∑

yj>y, j∈V ′

wij| is minimal}, (2.5)

which can be easily obtained by calculating the partial sums of weights along the
already placed neighbors of vertex i. Note that for the case where all the w’s are
identical, as indeed in the original graph, yi is just the median of the locations of the
already placed neighbors of i, as in [68]. In the general case, yi is placed within the
minimization segment, where the sum of all left oriented adjacent edges is roughly
equal to the sum of all right oriented adjacent edges, as close as possible to the end
of the bigger sum and thus minimizes the cost of the arrangement with respect to i.
Then V ′ ← V ′ ∪ {i} and the process continues until V ′ = V . Finally each position
yi is changed to

xi =
vi
2

+
∑

yk<yi

vk , (2.6)

thus retaining order while taking volume (length) into account.

Relaxation

The arrangement obtained after the initialization is not likely to be accurate enough,
only about 25% of the vertices end up within their minimization segment (satisfying
(2.5) for V ′ = V ). It should therefore be followed by several sweeps of relaxation,
first compatible then Gauss-Seidel-like. These two types of relaxation are very
similar to the above initialization. In each sweep, the nodes are scanned in their
natural order, replacing their position one at a time by locally minimizing the cost
of the arrangement associated with it. The compatible relaxation, motivated in [13],
only improves the positions of the F -nodes according to the minimization criterion
(2.5) (where V ′ = V ) while keeping the positions of the seeds (C-nodes) unchanged,
the Gauss-Seidel-like relaxation is similarly performed everywhere. Each such sweep
is again followed by (2.6). Our tests show that by employing just a small number of
relaxation sweeps the number of vertices located within their minimization segment
grows to about 70%.

Strict minimizations

A simple strict minimization is a relaxation that accepts only changes which decrease
the arrangement cost. Since done in the multilevel framework, it can be restricted at
each level to just local changes, i.e., reordering small sets of neighboring nodes, which
are adjacent (or relatively close) to each other at the current linear arrangement. It
is easy to see that switching positions between several adjacent nodes is indeed a
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local operation, since the resulting new arrangement cost can be calculated only at
the vicinity of the adjustment and not elsewhere.

Node-by-node minimization. We have chosen to minimize over a sequence
of local changes in which the candidate positions for each vertex i, in its turn, are
scanned over a segment of (maximal) length of 2k + 1, starting k positions to the
left of the current location of i, ending k positions to its right (with exceptions
of course at the beginning and end of the arrangement). Each of the candidate
positions has its own cost and the arrangement with the minimal cost is finally
chosen. Such minimization sweeps are repeated until no significant improvement in
the arrangement is observed or until a given maximal allowed number of repetitions
is reached. This parameter as well as k are addressed in Appendix B.

Segment minimization. We have also used another more sophisticated mini-
mization strategy that operates on segments of subsequent nodes. In each sweep, the
nodes are scanned according to their current linear arrangement, extracting weakly
connected segments of subsequent nodes. A weakly connected segment of nodes is
a segment which is connected within itself but is either completely disconnected or
only slightly connected to its right and left neighbors in the arrangement. Then the
position of each such segment is replaced by minimizing the cost of the arrangement
associated with it. The minimization of the energy of such a segment is similar to
that of a single node. Let W = {i1 = π−1(p + 1), ..., iq = π−1(p + q)} be a segment
of q sequential vertices in the current arrangement, i.e., the nodes positioned at q
subsequent coordinates starting at the p-th position. W will be moved to the posi-
tion where the sum of all its edges to the right is as equal as possible to the sum to
its left, that is, we used a generalization of the criterion (2.5), where the sums run
over all i ∈ W . The sweeps are again repeated up to some maximal allowed number
of iterations. This minimization has been in particular successful for meshes as is
summarized in Table 2.3.

Simulated Annealing

A general method to escape false local minima and advance to lower costs is to
replace the strict minimization by a process that still accepts each candidate change
which lowers the cost, but also assigns a positive probability for accepting a can-
didate step which increases the cost of the arrangement. The probability assigned
to a candidate step is equal to exp(−δ/T ), where δ > 0 measures the increase in
the arrangement cost and T > 0 is a temperature-like control parameter which is
gradually decreased towards zero. This process, known as Simulated Annealing
(SA) [67], in large problems would usually need to apply very gradual cooling (de-
crease of temperatures), making it extremely slow and inefficient for obtaining global
optimum.

In the multilevel framework, however, the role of SA is somewhat different. At
each level it is assumed that the global arrangement of aggregates has been inherited
from the coarser levels, and thus only local, small-scale changes are needed. For
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that purpose, we have started at relatively high T , lowered it substantially at each
subsequent sweep until strict minimization is employed.

Similar to the above strict minimization, 2k+1 candidate locations are examined
for each vertex, each corresponds to moving it some distance l, 0 < |l| ≤ k. The
initial temperature T = T (|l|) > 0 is calculated apriori for each distance l by
aiming at the acceptance of a certain percent of changes (for instance 60%). In
detail, the probability of moving a vertex l positions (l = ±1, ...,±k) is Pr(l) =
z · min(1, exp(−δ(l)/T (|l|)), where z is a normalization factor calculated by the
demand

∑k
l=−k Pr(l) = 1 and Pr(0) = z · minl=±1,...,±k(1 − Pr(l)/z). In each

additional sweep T (|l|) is reduced by a factor, such as 0.6. Typically only three such
cooling steps are used.

Repeated heating and cooling is successively employed for better search over
the local landscape. This search can be further enhanced by the introduction of a
“memory” like tool consisting of an additional permutation which stores the Best-
So-Far (BSF) observed arrangement. Henceafter, the BSF is being occasionally
updated by the procedure called Lowest Common Configuration (LCC) [18] which
enables the systematic accumulation of sub-permutations into it over a sequence
of different arrangements, such that each BSF sub-permutation exhibits the best
minimal sub-order encountered so far. The cost of the obtained BSF is at most the
lowest cost of all the arrangements it has observed, and usually it is lower. The
use of LCC becomes more important for larger graphs, where it is expected that
the optimum of a subgraph is only weakly dependent on other subgraphs. Thus,
it is not necessary to wait until all minimal sub-permutations are simultaneously
obtained, which may take exponential time; instead it is sufficient to obtain each
such minimal sub-order just once, since henceforth it is guaranteed to appear in
the BSF. In detail, the BSF (of a certain level) is initialized by the arrangement
obtained at the end of the strict minimization. Then the BSF is improved by the
LCC procedure which updates parts of it taken from the new arrangements reached
right after each heating-cooling procedure. All these accumulated updates are thus
stored at the BSF which actually provides the current calculated minimum. The
complete description of the LCC algorithm is given in Appendix A.

Algorithm 2: Disaggregation(coarse level C, fine level F)

Parameters: k1, ..., k8, γ (for details consider Appendix B)

Initialize F from C
Apply k1 sweeps of compatible relaxation on F
Apply k2 sweeps of Gauss-Seidel-like relaxation on F
Apply at most k3 sweeps of strict minimization within distance k4 on F
Apply at most k5 sweeps of segment minimization on F
Initialize BSF ← current arrangement of F
Do k6 times of heating and cooling
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Calculate T (|l|) for l = 1, ..., k7

Do k8 steps
Apply SA within distance k7 on F
Decrease all T (|l|) by a factor γ

Apply at most k3 sweeps strict minimization within distance k4 on F
Update BSF ← LCC(BSF, current arrangement of F)

Return BSF

2.3.4 Linearization and cycling

The graph Laplacian yields a good coarsening (the AMG coarsening) when the prob-
lem is associated with, or approximated by, the problem of minimizing the quadratic
functional

∑
ij∈E wij(xi − xj)2. A better quadratic formulation to a non-quadratic

minimization problem can usually be obtained in terms of a current approximation,
in the spirit of Newton linearization (see [17]). The main property of such an ap-
proximate quadratic formulation is stationarity, i.e., the quadratic formulation will
reproduce the current approximation if the latter happens to be already the solution
to the original (non-quadratic) problem. In the context of the MinLA, given a cur-
rent approximation {x̃i}, a stationary quadratic approximation to the generalized
MinLA problem is :

minimize
∑

ij∈E

wij
|x̃i − x̃j|α

(xi − xj)2 , with α = 1. (2.7)

At each level of the multiscale MinLA solver, several cycles to coarser levels
can thus be performed, using first the original (α = 0) quadratization, then in
following cycles gradually increasing α to 1. Using a certain value of α means here to
employ newly defined weights wnewij = wij/|x̃i− x̃j|α instead of the original Laplacian
in forming the aggregation seeds and interpolation weights. That is, a previously
obtained approximate solution is used to create weights for the next cycle. We have
used this idea only partially, i.e., by performing only complete V-cycles (returning
to coarser levels just from the finest level), with α = 0, 1/2, 1 successively, while
updating the BSF of the finest level by applying the LCC procedure at the end of
each additional V-cycle. Note, however, that (2.7) is stationary only for the real-
number approximation to MinLA; it is not stationary when the constraint that {xi}
should be a permutation of (1, ..., n) is added.

2.4 Results and Related Works

We have implemented and tested the algorithm using standard C++ and LEDA
libraries [74] on Linux machine with 1700MHz processor. The implementation is
non-parallel and not fully optimized.
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We have started to test our algorithm on the benchmark provided by Petit [79].
The test suite graphs are given in Table 2.1. In Table 2.2 we present the results
we have obtained for these graphs compared with other related works. In the col-
umn “Petit” we have extracted the best results reported in Petit’s et al. articles
[39, 38, 79, 78]. These results were usually obtained by combining spectral sequenc-
ing method with simulated annealing. In the column “KH” we show the results
of Koren and Harel [68]. They developed a linear-time algorithm for the MinLA,
based on the combination of spectral methods with the multi-scale paradigm. We
present their best reported results, those obtained after 10 full V-cycles. In the
column “BEFN” the results of Bar-Yehuda et al. [6] are given. They have de-
veloped a polynomial time algorithm (with complexity O(|V |2.2)) for computing an
optimal ordering induced by a binary balanced decomposition tree as an initial so-
lution followed by simulated annealing. Although Bar-Yehuda et al.’s results are of
high quality, their algorithm cannot be used for very large inputs due to its high
complexity. Finally the “Poranen” column includes the results obtained by the
stochastic algorithm called “genetic hillclimbing” [81].

The running time of our algorithm clearly depends on several parameters. We
have basically used three types of V-cycles : the “quick” V-cycle which is aimed
at achieving fast performance and thus somewhat compromising the quality of the
arrangement cost, the “extended” V-cycle which runs longer but succeeds in finding
lower cost arrangements, and the “super” V-cycle which provides even better results
but runs on the average twice slower for this test suite. The relevant parameters
for all types are presented in Appendix B. The “quick” V-cycle is mostly useful for
large graphs (like those in Table 4) for which it is crucial to cut down execution
time. Here, for the relatively small sized graphs of Petit’s benchmark, we have
omitted its detailed results, since the “extended” V-cycle already runs fast enough
and naturally provides better results. The column (of Table 2.2) marked by “Ours
: extended” summarizes the best results observed out of 100 runs (using different
sequences of random numbers) of three “extended” V-cycles each. The column (of
Table 2) marked by “Ours : super” summarizes the best results observed out of 50
similar runs of three “super” V-cycles each. Excluding the first four random graphs
(discussed next), it is evident that our algorithm almost always provides the best
results, if not by using the “extended” V-cycle, then when applying the “super” one.
Also important is the fact that the calculated standard deviation of the trials is no
bigger than 1% (for both the “extended” and the “super” V-cycles) of the minimal
result shown in the table and usually it is much smaller. One “quick” V-cycle gave
on the average 107.3% of our best results, while three “quick” V-cycles improve it to
105.4%. One “extended” V-cycle further improved the results to 103.3% and three
“extended” V-cycles to 101.5%. Extracting the best results out of only three runs
(using different sequences of random numbers) of three “extended” V-cycles already
gave 100.9% of the best seen costs. Since the running time of our algorithm is almost
negligible for many of the graphs of Petit’s test suite we present it (in Table 2.5)
only for the much larger graphs given in Table 2.4 and discussed below.
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Table 2.1: Petit’s benchmark [79].
Graph Name |V | |E| Min/Avg/Max degree Diameter
randomA1 1000 4974 1/9.95/21 6
randomA2 1000 24738 28/49.7/72 3
randomA3 1000 49820 72/99.64/129 4
randomA4 1000 8177 4/16.35/29 4
randomG4 1000 8173 5/16.34/31 23
hc10 1024 5120 10/10/10 10
mesh33x33 1089 2112 2/3.88/4 64
bintree10 1023 1022 1/1.99/3 18
3elt 4720 13722 3/5.81/9 65
airfoil 4253 12289 3/5.78/10 65
crack 10240 30380 3/5.93/9 121
whitaker3 9800 28989 3/5.91/8 161
c1y 828 1749 2/422/304 10
c2y 980 2102 1/4.29/327 11
c3y 1327 2844 1/4.29/364 13
c4y 1366 2915 1/4.26/309 14
c5y 1202 2557 1/4.25/323 13
gd95c 62 144 2/4.65/15 11
gd96a 1076 1676 1/3.06/111 20
gd96b 111 193 2/3.47/47 18
gd96c 65 125 2/3.84/6 10
gd96d 180 228 1/2.53/27 8

Random graphs. Two kinds of random graphs were introduced in Petit’s
test suite : (a) Uniform random graphs Gn,p (randomA[1,2,3,4]), where n = 1000
is the number of vertices and p is the probability of having an edge between any
two nodes, and (b) Geometric random graph Gn,d (randomG4) with n = 1000
uniformly distributed nodes in a unit square, such that each pair of nodes which
have smaller distance than d are connected by an edge. It is clear that our algorithm
succeeds when the graph has some geometric structure like in “randomG4”, and
unlike “randomA[1,2,3,4]”. While most algorithms perform rather well for those
uniform random graphs, producing results of comparable quality, the best shown
results are those observed by Petit et al. using simulated annealing, which is basically
a stochastic search. We have however checked that for fixed n and p, different
random generated numbers create different uniform graphs which nonetheless always
exhibit similar linear arrangement cost results. And the important point is that
cost variations due to different heuristics are within variations anyway produced
by random changes in the graph. Therefore, as already stated by Petit [38, 79],
uniform random graphs are actually unworthy for the purpose of evaluating heuristic
algorithms (see analytical explanation in [40]).

Graphs with known minimum. To further measure the quality of our heuris-
tic, we have tested it on graphs for which the MinLA value is known. Three such
examples already appear in Table 2.1, namely, the hypercube graph (“hc10”), the



RESULTS AND RELATED WORKS 37

Table 2.2: Comparative table of results for the test suite of Table 2.1. The obtained
minimum is bolded.

Graph Petit KH BEFN Poranen Ours : Ours :
“extended” “super”

randomA1 867570 909126 884261 878637 890430 888381
randomA2 6528780 6606174 6576912 6553553 6610933 6596081
randomA3 14202700 14457452 14289214 — 14349635 14303980
randomA4 1721670 1765217 1747143 1739317 1757119 1747822
randomG4 150940 149513 146996 142587 140240 140211
hc10 523776 523776 523776 523776 523776 523776
mesh33x33 31929 31729 33531 32178 31895 31729
bintree10 4069 3950 3762 3899 3707 3696
3elt 363204 373464 363204 383286 359977 357329
airfoil 285231 291794 289217 306005 275833 272931
crack 1491126 — — — 1507325 1489266
whitaker3 1151064 1205919 1200374 1203349 1152441 1144476
c1y 62936 64934 62333 62857 62545 62262
c2y 79429 80148 79571 80327 79200 78822
c3y 123548 127315 127065 125654 126111 123514
c4y 116140 118437 115222 119232 115935 115131
c5y 100264 104076 96956 99389 97840 96899
gd95c 506 509 506 506 506 506
gd96a 96342 106668 99944 101394 98042 96249
gd96b 1416 1434 1417 1416 1416 1416
gd96c 519 519 519 519 519 519
gd96d 2393 2393 2409 2391 2391 2391

lattice graph (“mesh33x33”) and the binary tree (“bintree10”) [39]. In addition, we
have added four larger lattices (“mesh100x100”, “mesh200x200”, “mesh500x500”,
“mesh1000x1000”) and three proper interval graphs which also have known min-
ima [91]. The results are shown in Table 2.3. We have employed three “extended”
V-cycles enhanced by the segment minimization (see Section 2.3.3). Eventhough
the very particular known optimum for meshes was not fully reached, our solutions
did show very similar structures and close results even for the large meshes, as
is indicated by the last column of Table 2.3: The quality of our solution has not
deteriorated with the growth of the mesh.

Larger graphs. Since the execution time of our algorithm is basically linear
(even in its current unoptimized state) we were looking for additional large sized test
cases. We have found only one paper with such results, the one by Koren and Harel
[68], which is indeed the only one exhibiting linear execution time. In this test suite
we have used the same “quick” and “extended” V-cycles as in Petit’s experiments.
The results and running time (in minutes) are summarized in Table 2.5. Column
“KH” presents those obtained by Koren and Harel after five full V-cycles. (We
have chosen to present these results rather than those obtained after 10 V-cycles
as the latter only improve the former by less than 1% but run twice as slow.) The
two columns marked by “Ours” show the extremely fast performance and very
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Table 2.3: Comparative table of results for graphs with known minimum.
Graph |V | |E| Our cost Optimal cost Our/Optimal
mesh33x33 1089 2112 31720 31680 1.001
mesh100x100 10000 19800 880234 868820 1.013
mesh200x200 40000 79600 7028594 6923320 1.015
mesh500x500 250000 49900 109972299 107916916 1.019
mesh1000x1000 1000000 1998000 879287403 862634024 1.019
bintree10 1023 1022 3696 3696 1
hc10 1024 5120 523776 523776 1
Proper Interval Graph I 200 3213 30766 30766 1
Proper Interval Graph II 500 14784 250241 250241 1
Proper Interval Graph III 1000 45393 1.19709e+06 1.19709e+06 1

good results of our algorithms: our single “quick” V-cycle runs (on the average)
less than 20% of the running time of Koren and Harel’s algorithm and improves
their results by 8.3%, while our three “extended” V-cycles run (∼ 3.5 times) slower
but exhibits results which are 12% better. Each cost presents the average result
obtained over 10 runs of different sequences of random numbers, for which we have
measured a standard deviation not larger than 2%. (Note that stochastisity enters
not only in the SA procedure but also in the given initial order of nodes which
affects the coarsening procedure given by Algorithm 1.) Additional tests show that
three “quick” V-cycles already improve over “KH” by 10%, and that dropping the
LCC procedure (within the SA process) from the runs of three “extended” V-cycles
has worsen those results by about 1%. This last result demonstrates the ability of
the LCC to further extract better minima. We found that the “super” V-cycle is
unuseful here since it does not show any significant improvement of results, while
the increase in running time (because of the growing degree of the coarse graphs and
additional SA) makes it unusable for practical purposes, especially for the largest
graphs.

Table 2.4: KH large graphs test suite.

Graph |V | |E| Degree
min/max

tooth 78136 452591 3/39
ocean 143437 409593 1/6
mrngA 257000 505048 2/4
rotor 99617 662431 5/125
598 110971 741934 5/26
144 144649 1074393 4/26
m14b 214765 1679018 4/40
mrngB 1017253 2015714 2/4
auto 448695 3314611 4/37
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Table 2.5: Comparative table of results for large graphs. The obtained minimum is
bolded.

KH : Ours : “quick” Improvement Ours : “extended” Improvement
Graph 5 V-cycles single V-cycle (Ours÷KH) 3 V-cycles (Ours÷KH)

cost/time cost/time cost/time cost/time cost/time
tooth 255.465.042/10.5 237.353.161/1.2 0.929/0.114 227.639.682/27 0.891/2.571
ocean 141.732.687/13.5 131.968.513/3.2 0.931/0.237 118.882.522/72 0.839/5.333
mrngA 348.448.986/23.5 319.286.767/6 0.916/0.255 305.560.971/90 0.877/3.830
rotor 247.583.742/16.5 230.618.627/1.9 0.931/0.115 221.832.991/42 0.896/2.545
598 340.886.008/19 287.702.639/3 0.844/0.158 281.033.967/57 0.824/3.000
144 772.846.779/28.5 764.706.283/4.4 0.989/0.154 745.701.842/84 0.965/2.947
m14b 1.004.606.217/40 877.930.925/6.8 0.877/0.170 857.743.008/130 0.854/3.250
mrngB 3.558.254.373/98 3.377.861.206/38 0.949/0.388 3.254.023.540/520 0.914/5.306
auto 4.501.150.138/100 3.986.693.232/18 0.886/0.180 3.871.472.605/340 0.860/3.400

Average 0.917/0.197 0.880/3.576

2.5 Conclusions

We have presented a new multilevel algorithm for the MinLA problem for general
graphs. The algorithm is based on the general principle that during coarsening
each vertex may be associated to more than just one aggregate according to some
“likelihood” measure. The uncoarsening initialization, which produces the first ar-
rangement of the fine graph nodes, strongly relies on energy considerations (unlike
usual interpolation in classical AMG). This initial order is further improved by local
strict minimization relaxation and possibly by employing stochasticity, i.e., simu-
lated annealing. The running time of the algorithm is linear, thus it can be applied
to very large graphs.

We have basically used three types of V-cycles: the “quick”, “extended” and
“super”. The “extended” V-cycle includes SA, which is enhanced by the LCC pro-
cedure, and spends more time on local minimization. The “super” V-cycle is aimed
at achieving even better results for small and medium sized graphs. The “quick”
one runs very fast and provides results which are at most about 11% (on the average
4%) off the better results obtained by the “extended” and “super” V-cycles. Due to
stochastic elements, different results are observed for different sequences of random
numbers; however, all our tests show that this variability is not larger than 2%.

Our main conclusion is that the average and the best results of our “extended”
and “super” V-cycles are almost always better than the results of completely stochas-
tic heuristics (simulated annealing, genetic hillclimbing, etc.), the Fiedler vector
multilevel algorithm and the binary balanced decomposition tree algorithm. For
uniform random graphs it is clear that some results obtained by stochastic heuris-
tics outperform ours. This is because our algorithm succeeds when the graph has
non-stochastic structure, i.e., in more intuitive words it has “some geometry”. We
recommend our multilevel algorithm as a general practical method for solving the
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Minimum Linear Arrangement problem. The implemented algorithm can be ob-
tained at http://www.wisdom.weizmann.ac.il/∼safro/minla.
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Appendix A: Lowest Common Configuration (LCC)

The algorithm presented below was originally designed for the Traveling Salesman
Problem [86]. Given two arrangements of the graph nodes ϕ = (π−1

1 (1), π−1
1 (2), ..., π−1

1 (n))
and ψ = (π−1

2 (1), π−1
2 (2), ..., π−1

2 (n)), their LCC, denoted LCC(ϕ, ψ), is a third lin-
ear arrangement whose cost is lower than (or at most equals to) the costs of both ϕ
and ψ, produced as follows.

Define as a common sub-permutation (CSP) of ϕ and ψ any subset S for which,
for certain i and j, the following two requirements hold :

1. S = {ϕ(i), ϕ(i+ 1), ..., ϕ(i+ |S| − 1)} = {ψ(j), ψ(j + 1), ..., ψ(j + |S| − 1)}

2. {ϕ(i), ϕ(i+ |S| − 1)} = {ψ(j), ψ(j + |S| − 1)} .

That is, the subset S appears as a consecutive sequence of nodes in both ϕ and ψ,
possibly in different orders, but with common ends.

LCC(ϕ, ψ) is constructed by first finding all the CSPs S of ϕ and ψ, and then
choosing for each S the suborder from either ϕ or ψ, whichever yields the lower cost
arrangement. It is not straightforward to find all CSPs of given ϕ and ψ, especially if
the complexity of that subroutine is required not to dominate the entire complexity
of the multilevel solver. We have constructed an algorithm which finds all CSPs in
nearly linear time. The algorithm is based on the following observations.

Consider a pair of consecutive suborders (one is taken from ϕ and the other
from ψ) whose ends are common and lengths are equal. Such a pair of suborders
is suspected of being a CSP (SCSP). Our aim is to find all SCSPs which with very
high probability are indeed CSPs.

Attach to each vertex j some marking Mj, a real number. Construct for ϕ the
vector (SM)ϕ of the partial sums of these markings (SM)ϕi =

∑i
l=1Mϕ(l) . Similarly,

construct (SM)ψ for ψ. Let ϕ(i), ϕ(i+1), ..., ϕ(i+k) and ψ(j), ψ(j+1), ..., ψ(j+k)
be a SCSP. If the SCSP is also a CSP then the following holds:

(SM)ϕi+k − (SM)ϕi = (SM)ψj+k − (SM)ψj . (2.8)
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The opposite is, however, not always true : (2.8) may hold for such a SCSP even
when the suborders are not permutations of each other. Consequently the markings
should be chosen so that this ambiguity will practically never happen. It is enough
for example to choose Mi to be a random number between 0 and 1 taken to some
power p. Clearly, the probability that (2.8) holds while the SCSP is not a CSP is
extremely low.

Equation (2.8) can also be written as

(SM)ϕi − (SM)ψj = (SM)ϕi+k − (SM)ψj+k . (2.9)

If ϕ(i) = ψ(j) = l and ϕ(i + k) = ψ(j + k) = m, say, and if we define for every
vertex l the “assignment”

Al = (SM)ϕπ1(l) − (SM)ψπ2(l), (2.10)

Equation (2.9) implies that if Al = Am, then with very high probability l and m
are ends of a CSP. Such pairs of vertices can easily be found by sorting the list of
assignments. The final construction of the LCC follows by choosing the lower cost
suborder for each CSP, in ascending order of the length of the CSPs, thus treating
successfully even the rarely occurring situation of nested CSPs. All cases where
ϕ(i) = ψ(j + k) and ϕ(i + k) = ψ(j) can also be found by repeating the above
procedure while reversing the order of either ϕ or ψ, however in all our tests we
have not found an indication of the importance of this additional procedure.

Appendix B: Parameters

In order to control the running time of the algorithm it is important to decrease
the total number of edges of the constructed coarse graphs. This is achieved by
the following two parameters: the maximum allowed coarse neighborhood size r,
which restricts the allowed size |Ni| of the coarse neighborhood of a vertex i ∈ F
by deleting the weakest wij, j ∈ C; and the edge filtering ǫ threshold, which deletes
every relatively weak edge ij (from the created coarse graph) if both wij < ǫ · si
and wij < ǫ · sj, where si =

∑
k wik.

These two parameters and five others which control the uncoarsening procedure
(see Algorithm 2) are presented in Table 2.6 for the “quick”, “extended” and “super”
V-cycles we have used. The last two parameters (of Algorithm 2) were constantly
chosen to be k8 = 4 and γ = 0.6.

It is however important to mention that these parameters are the ones used
only for the finest levels. As the coarse graphs become much smaller they are
accordingly increased. This hardly affects the entire running time of the algorithm
but systematically improves the obtained results. In the last column of Table 2.6
we specifically describe the increase introduced for each parameter as a function of
level L, which usually depends on the ratio R = max(1, |E0|/|EL|) measuring the
relative decrease of the number of edges at level L compared with the original graph.
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Table 2.6: The parameters used for the “quick”, “extended” and “super” V-cycles.
(* used only to obtain the results of Table 2.3)

Parameter “quick” “extended” “super” The increase
V-cycle V-cycle V-cycle for level L

The coarse neighborhood size (r) 6 10 20 + log(R)

The edge filtering threshold (ǫ) 0.01 0.005 0.001 ·0.9log(R)

The number of sweeps of Compatible relaxation (k1) 3 10 10 +2 · L
The number of sweeps of Gauss-Seidel relaxation (k2) 3 10 30 +2 · L
The maximal number of sweeps
of node-by-node minimization (k3) 30 30 30 –

k4 used in the node-by-node minimization 1 10 20 + log(
√

R)
The maximal number of sweeps
of segment minimization (k5) 0 0 (30∗) 0 –
The number of heating and cooling in SA (k6) 0 3 20 · log(R)

k7 used in the SA 0 5 10 + log(
√

R)



CHAPTER 3

A multilevel algorithm for the minimum 2-sum problem

3.1 Introduction

The minimum p-sum problem (M2sP) belongs to a large family of graph layout
problems such as : Bandwidth, Cutwidth, Vertex Separation, Profile of a Graph,
Sum Cut, etc. The M2sP appears in several applications for solving problems in the
large sparse matrix computation, such as finding the minimum linear arrangement
[92, 68] or the bandwidth [94]. The M2sP is also closely related to the problem of
calculating the envelope size of a symmetric matrix or more precisely, to the amount
of work needed in the Cholesky factorization of such a matrix [50]. In addition, the
M2sP may be motivated as a model used in VLSI design, where at the placement
phase it is chosen to minimize the total squared wire length [30]. Commonly for
general graphs (or matrices) these problems are NP-hard and their decision versions
are NP-complete [48]. The NP-completeness of the M2sP is proved in [50].

The M2sP becomes a simple quadratic optimization problem with a known so-
lution, due to Hall [51], if the restriction on the solution coordinates is relaxed, i.e.,
the coordinates need not be all integers, as in the case where all vertices are consid-
ered to have equal unity volume (see Section 3.2). Hall has shown in [51] that the
eigenvector v2 which corresponds to the second smallest eigenvalue of the Laplacian
of the graph (provided the graph is connected), is the best nontrivial solution to
this unrestricted form of the M2sP (subject to some normalization of the solution).
Arrangement of the graph vertices according to v2 is a well known, quite success-
ful heuristic, usually called the spectral approach, used for many ordering problems
like the minimum linear arrangement [68], partitioning [55, 83, 82, 98], envelope
reduction of sparse matrices [7], etc.

George and Pothen [50] have studied the M2sP as they used it for establishing
results for the envelope reduction of matrices. They tried to evaluate the quality of
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the approximation for the M2sP by the spectral approach in a quantitative man-
ner. While for some finite element graphs they indeed got close results, for general
graphs the gap was profound. They suggested that this gap can be reduced by ap-
plying some local reordering (postprocessing) to the obtained results of the spectral
approach.

The fact that the solution for the M2sP with real variables is extensively used
as a first approximation to other graph layout problems, brings up the idea that
a good solution to the discrete M2sP can serve as well, if not better. The first
question, of course, is how well the spectral approach solves the M2sP itself, that
is, how well the solution with real variables approximates the discrete setting. This
question is extensively tested in our paper. In addition, since the M2sP already
penalizes long distances sufficiently strongly to practically prohibit very non-uniform
distribution of distances, which is typical to many other layout problems, and since
its formulation is nothing but a quadratic functional, it may be considered the
simplest yet central among other layout problems. As such, M2sP can and should
be used (in various ways, e.g., serve as a first approximation [94]) to help solving
other problems. This requires, of course, having an efficient algorithm at hand,
which is exactly the purpose of our research.

In this paper we present a new multilevel algorithm for the minimum p-sum prob-
lem based on the Algebraic MultiGrid scheme (AMG) [15, 16, 12, 22, 89, 99, 100].
The main objective of a multilevel based algorithm is to create a hierarchy of prob-
lems, each representing the original problem, but with fewer degrees of freedom.
General multilevel techniques have been successfully applied to various areas of
science (e.g. physics, chemistry, engineering, etc.) [14, 17]. AMG methods were
originally developed for solving linear systems of equations resulting from the dis-
cretization of partial differential equations. Lately they have been applied to various
other fields, yielding for example novel methods for image segmentation [97] and for
the linear arrangement problem [92]. In the context of graphs it is the Laplacian
matrix that represents the related set of equations. The main difference between
our approach to other multilevel approaches (related to various graph optimization
problems, e.g., [64]) is the coarsening scheme. While the previous approaches may
be viewed as strict aggregation process (in which the nodes are simply blocked to-
gether into small groups and the edges are defined by the straightforward sum of the
existing edges between these groups), the AMG coarsening is actually a weighted
aggregation: each node may be divided into fractions, and different fractions belong
to different aggregates. This enables more freedom in solving the coarser levels and
avoids making hardened local decisions (such as the edge contractions made when
strict aggregation is employed) before accumulating the relevant global information.
The aggregation process we use here is similar to the one used for solving the mini-
mum linear arrangement problem [92]. This part of the algorithm may, in principle,
be general to many other graph layout problems (e.g., [87]), as it mainly creates the
hierarchy of graphs. The diverse algorithmic ingredients, however, emerge during
the disaggregation.
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In the disaggregation step, the final arrangement obtained on a coarser level
is projected to a finer level. This initial fine level arrangement is being further
improved by applying various local reordering methods. In this article we introduce
an algorithm for the strict minimization, called Window Minimization, which is
based on the simultaneous reordering of several vertices. Then our postprocessing
is intensified by Simulated Annealing (SA) [67] which is a general method to escape
local minima. In the multilevel framework SA only aims at searching for local
changes that guarantee the preservation of large-scale solution features inherited
from coarser levels.

The power and robustness of our multilevel algorithm was proven by intensive
experimental comparison with the spectral approach. Without the postprocess-
ing the multilevel results are much better than the spectral ones by an average
of 34.4%. After applying the same postprocessing (without simulated annealing)
to both the multilevel and the spectral first approximations, the gap between the
two frameworks was significantly reduced, but still the multilevel results are better
by an average of 4.7%. Different parts of the postprocessing were enabled step-
by-step in order to show the gradual improvement of the results. However, not
only the results of the multilevel algorithm are better, but while our algorithm
performs in linear time, the spectral approach is sensitive to the obtained accu-
racy; the trade-off between the complexity and the high accuracy of the calcula-
tion of v2 is discussed in Section 3.4. Our experiments show that the Algebraic
Multilevel approach can be used as a first approximation for the M2sP to obtain
high quality results in linear time, while the postprocessing can actually improve
these results and can serve as a tool for improving any first approximation of the
M2sP obtained by other methods. The implemented algorithm can be obtained at
http://www.wisdom.weizmann.ac.il/∼safro/min2sum.

The problem definition and its generalization are described in Section 3.2. The
multilevel algorithm along with additional optimization techniques are presented
in Section 3.3. A comparison of our results with the spectral approach is finally
summarized in Section 3.4.

3.2 Problem definition and generalization

Given a weighted graph G = (V, E), where V = {1, 2, ..., n}, denote by wij the
non-negative weight of the edge ij between nodes i and j (if ij /∈ E then wij = 0).
The purpose of the minimum p-sum problem is to find a permutation π of the
graph nodes such that the cost σ2(G, π) =

∑
ij

(
wij(π(i) − π(j))2

)
is minimal. In

the generalized form of the problem that emerges during the multilevel solver, each
vertex i is assigned a volume (or length), denoted vi. The task now is to minimize
the cost σ2(G, x, π) =

∑
ij

(
wij(xi − xj)2

)
, where xi = vi

2
+
∑

k,π(k)<π(i) vk, i.e., each
vertex is positioned at its center of mass capturing a segment on the real axis which
equals its length. Note that the difference xi−xj contains the volumes of the vertices
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between i and j and half the volumes of i and j. The original form of the problem
and the general form with equal-volume vertices are both minimized by the same
permutation.

We are not interested in the worst possible cases, which are often very artifi-
cial. Our focus is on practical high-performance algorithm that will yield (in most
practical cases) a good approximation to the optimum at low computational cost.
Typically, the multilevel algorithms exhibit linear complexity, i.e., the computational
cost in most practical cases is proportional to |V |+ |E|.

3.3 The algorithm

In the multilevel framework a hierarchy of decreasing size graphs : G0, G1, ..., Gk

is constructed. Starting from the given graph, G0 = G, create by coarsening the
sequence G1, ..., Gk, then solve the coarsest level directly, and finally uncoarsen the
solution back to G. This entire process is called a V -cycle.

As in the general AMG setting, the choice of the coarse variables (aggregates),
the derivation of the coarse problem which approximates the fine one and the de-
sign of the coarse-to-fine disaggregation (uncoarsening) process are all determined
automatically as described below.

3.3.1 Coarsening: Weighted Aggregation

The coarsening used here is similar to the process we have used in solving the
minimum linear arrangement problem [92]. However, for the completeness of this
article, we briefly repeat it.

The coarsening is interpreted as a process of weighted aggregation of the graph
nodes to define the nodes of the next coarser graph. In weighted aggregation each
node can be divided into fractions, and different fractions belong to different ag-
gregates. The construction of a coarse graph from a given one is divided into three
stages: first a subset of the fine nodes is chosen to serve as the seeds of the aggre-
gates (the nodes of the coarse graph), then the rules for interpolation are determined,
thereby establishing the fraction of each non-seed node belonging to each aggregate,
and finally the strength of the connections (or edges) between the coarse nodes is
calculated.

Coarse Nodes. The construction of the set of seeds C and its complement,
denoted by F , is guided by the principle that each F -node should be “strongly
coupled” to C. Also, we will include in C nodes with exceptionally large volume,
or nodes expected (if used as seeds) to aggregate around them exceptionally large
volumes of F -nodes. To achieve these objectives, we start with an empty set C,
hence F = V , and then sequentially transfer nodes from F to C, employing the
following steps. As a measure of how large an aggregate seeded by i ∈ F might
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grow, define its future-volume ϑi by

ϑi = vi +
∑

j∈V

vj ·
wji∑

k∈V

wjk
. (3.1)

Nodes with future-volume larger than η times the average of the ϑi’s are first trans-
ferred to C as most “representative”. (In our tests η = 2). The insertion of addi-
tional fine nodes to C depends on a threshold Q (in our tests Q = 0.4) as specified
by Algorithm 1. That is, a fine node i is added to C if its relative connection to C
is not strong enough, i.e., smaller than Q. Also, vertices with larger values of ϑi are
given higher priority to be chosen to belong to C.

Algorithm 1: CoarseNodes(Parameters : Q, η)

C ← ∅, F ← V

Calculate ϑi for each i ∈ F , and their average ϑ

C ← nodes i with ϑi > η · ϑ
F ← V \ C
Sort F in descending order of ϑi
Go through all i ∈ F in descending order of ϑi

If

(
∑
j∈C

wij/
∑
j∈V

wij

)
≤ Q then move i from F to C

Return C

For convenience we are currently using a library O(n log(n)) sorting algorithm. How-
ever, since no exact ordering is really needed, this can be replaced by a rough buck-
eting sort which has O(n) complexity. We have actually implemented a simple
bucketing sort and compared its results with the exact sort ones. Since no signif-
icant differences were observed, we may state that the exact sorting does not play
a role in the algorithm. The only important task is to identify the vertices with
exceptionally large future-volume, which can easily be achieved by O(n) procedure.

The Coarse Problem. Each node in the chosen set C becomes the seed of an
aggregate that will constitute one coarse level node. Define for each i ∈ F a coarse
neighborhood Ni = {j ∈ C, wij ≥ αi}, where αi is determined by the demand
that |Ni| does not exceed the allowed coarse neighborhood size r chosen to control
complexity. (For typical values of r consider the Appendix). The classical AMG
interpolation matrix P (of size |V | × |C|) is defined by

Pij =






wij/
∑
k∈Ni

wik for i ∈ F, j ∈ Ni

1 for i ∈ C, j = i
0 otherwise .

(3.2)

Pij thus represents the likelihood of i to belong to the j-th aggregate. Let I(k) be
the ordinal number in the coarse graph of the node that represents the aggregate



48 A MULTILEVEL ALGORITHM FOR THE MINIMUM 2-SUM PROBLEM

around a seed whose ordinal number at the fine level is k. Following the weighted
aggregation scheme used in [97], the edge connecting two coarse aggregates, p = I(i)

and q = I(j), is assigned with the weight w
(coarse)
pq =

∑
k 6=l PkiwklPlj. The volume

of the i-th coarse aggregate is
∑

j vjPji. Note that during the process of coarsening
the total volume of all vertices is conserved.

Solving the coarsest level, which consists of no more than 8 nodes (otherwise
a still coarser level would be introduced for efficiency) is performed directly by simply
trying all possible arrangements.

3.3.2 Disaggregation (uncoarsening)

Having solved a coarse problem, the solution to the next-finer-level problem is ini-
tialized by first placing the seeds according to the coarse order and then adjusting
all other F -nodes while aiming at the minimization of the quadratic arrangement
cost. This approximation is subsequently improved by several relaxation (local re-
ordering) sweeps, first compatible, then regular with or without additional stochastic
elements, as explained below and summarized in Algorithm 3.

Initialization

Given is the arrangement of the coarse level aggregates in its generalized form,
where the center of mass of each aggregate j ∈ C is positioned at xI(j) along the
real axis. We begin the initialization of the fine level arrangement by letting each
seed j ∈ C inherit the position of its respective aggregate: yj = xI(j). At each stage
of the initialization procedure, define V ′ ⊂ V to be the subset of nodes that have
already been placed, so we start with V ′ = C. Then proceed by positioning each fine
node i ∈ V \ V ′ at the coordinate yi in which the cost of the arrangement, at that
moment when i is being placed, is minimized. The sequence in which the nodes are
placed is roughly in decreasing order of their relative connection to V ′, that is, the
nodes which have strong connections to V ′ compared with their connections to V
are placed first. To be precise, the coordinate yi is located at its minimum (volumes
are not taken into account)

yi =

∑
j∈V ′ yjwij∑
j∈V ′ wij

. (3.3)

Then V ′ ← V ′ ∪ {i} and the process continues until V ′ = V . Finally each position
yi is changed to

xi =
vi
2

+
∑

yk<yi

vk , (3.4)

thus retaining order while taking volume (length) into account.
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Relaxation

The arrangement obtained after the initialization is a first feasible solution for M2sP
which is then improved by employing several sweeps of relaxation, first compatible
then Gauss-Seidel-like (GS). These two types of relaxation are very similar to the
above initialization: The compatible relaxation, motivated in [13], improves the
positions of (only) the F -nodes according to the minimization criterion (3.3) (where
V ′ = V ) while keeping the positions of the seeds (C-nodes) unchanged. The GS
relaxation is similarly performed, but for all nodes (including C). Each such sweep
is again followed by (3.4).

Window Minimization

The cost of the arrangement can be further reduced by strict minimization, a se-
quence of rearrangements that accepts only changes which decrease the arrangement
cost. Since done in the multilevel framework, it can be restricted at each level to
just local changes, i.e., reordering small sets of neighboring nodes, which are ad-
jacent (or relatively close) to each other at the current arrangement. It is easy to
see that switching positions between several adjacent nodes is indeed a local op-
eration, since the resulting new arrangement cost can be calculated only at the
vicinity of the adjustment and not elsewhere. Such a node by node minimization
was applied in our algorithm for the Minimum Linear Arrangement problem (see
[92]). This method may also be used for M2sP. However, we would like to propose a
more advanced method of local minimization, called Window Minimization (WM),
which is suitable for both the multilevel and the spectral approach frameworks.
The difference between WM and simple node by node minimization is that WM
simultaneously minimizes the arrangement cost of several nodes. Given a current
approximation x̃ to the arrangement of the graph, denote by δi a correction to x̃i.
Let W = {i1 = π−1(p+ 1), ..., iq = π−1(p+ q)} be a window of q sequential vertices
in the current arrangement, i.e., the nodes positioned at q subsequent coordinates
x̃i1 , ..., x̃iq . The local energy minimization problem associated with a given window
W can be formulated as follows :

minimize σ2(W, x̃, π, δ) =
∑

i,j∈W

wij(x̃i+δi−x̃j−δj)2+
∑

i∈W, j 6∈W

wij(x̃i+δi−x̃j)2. (3.5)

To prevent the possible convergence of many coordinates to one point, and, more
precisely, to express the aim of having {xi + δi}i∈W an approximate permutation of
{xi}i∈W , we have added the following constraints

∑

i∈W

(x̃i + δi)
mvi =

∑

i∈W

x̃i
mvi , m = 1, 2

where for m = 2 we have neglected the quadratic term in δi. Note that the sums∑
i∈W x̃i

mvi for m = 1, 2 are invariant under permutations. Using Lagrange multi-



50 A MULTILEVEL ALGORITHM FOR THE MINIMUM 2-SUM PROBLEM

pliers, the final formulation of the window minimization problem is :

minimize σ2(W, x̃, π, δ, λ1, λ2) = σ2(W, x̃, π, δ) + λ1

∑

i∈W

δivi + λ2

∑

i∈W

δivix̃i , (3.6)

under the second and third constraints of (3.7) below, yielding the following system
of equations:






∑
j∈W

wij(δi − δj) + δi
∑
j 6∈W

wij + λ1vi + λ2vix̃i =
∑
j

wij(x̃j − x̃i) i ∈ {1 . . . q}
∑
i

δivi = 0
∑
i

δivix̃i = 0 .

(3.7)
Usually in a correct multilevel framework, the changes δi are supposed to be

relatively small since the global approximation for the arrangement is inherited
from the coarser levels. Their smallness is effected by the very restriction of the
minimization to one window at a time. Because of the continuous formulation (3.7)
of the problem within a window, the solution will almost always tend to move the
vertices away from their initial ordering (adapted from the discrete arrangement).
These changes may introduce some overlap between the vertices, but at the same
time decrease the energy cost (3.6). It is thus expected that the δi’s will not vanish
even at the global minimum. After solving the system (3.7), every vertex i ∈W is
thus positioned at yi = x̃i + δi. Feasibility with respect to the volumes of the nodes
is retained by applying (3.4). Since the size and location of W are quite arbitrary,
the energy cost of the new sub-arrangement is further improved by GS relaxation
sweeps applied to an enlarged W, where, say 5% of the window’s size at each end
(if possible) are added to W. As usual, each sweep is followed by (3.4). The final
obtained energy cost is then compared with the one prior to all the window changes,
the minimum of the two is accepted, updating x̃. We have observed actual decrease
in the energy cost in about 5% of the windows.

A sweep of WM with a given window size q consists of a sequence of overlapping
windows, starting from the first node in the current arrangement and stepping by
⌊ q

2
⌋ for each additional window. One such sweep is employed for every given q,

while a small number of different q’s is used (in our tests there never was a need
for more than 6). Our experiments show that the algorithm is robust to changes
in the chosen q’s; for complete details consider WinSizes in the Appendix. Note,
however, that q should be small enough to still guarantee linear execution time of
the entire algorithm. The WM is summarized in Algorithm 2.

Algorithm 2: WindowMinimization(graph G, current order x̃)

Parameters: WinSizes, k2 (for chosen values, consider the Appendix)

For each q ∈ WinSizes
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For i = 1 To |V | Step i = i+ ⌊ q
2
⌋

W = {π−1(i), ..., π−1(i+ q − 1)}
Solve the system of equations (3.7)
Apply k2 sweeps of GS relaxation on the enlarged W with x̃+ δ

x̃← x̃+ δ if the cost of the arrangement was decreased
Return x̃

Simulated Annealing

A general method to escape false local minima and advance to lower costs is to
replace the strict minimization by a process that still accepts each candidate change
which lowers the cost, but also assigns a positive probability for accepting a can-
didate step which increases the cost of the arrangement. The probability assigned
to a candidate step is equal to exp(−∆/T ), where ∆ > 0 measures the increase
in the arrangement cost and T > 0 is a temperature-like control parameter which
is gradually decreased toward zero. This process, known as Simulated Annealing
(SA) [67], in large problems would usually need to apply very gradual cooling (de-
crease of temperatures), making it extremely slow and inefficient for approaching
the global optimum.

In the multilevel framework, however, the role of SA is somewhat different. At
each level it is assumed that the global arrangement of aggregates has been inherited
from the coarser levels, and thus only local, small-scale changes are needed. For
that purpose, we have started at relatively high T , lowered it substantially at each
subsequent sweep, until window minimization is employed.

In particular, 2k + 1 candidate locations are examined for each vertex, each
corresponds to moving it some distance l, 0 < |l| ≤ k. The initial temperature
T = T (|l|) > 0 is calculated apriori for each distance l by aiming at the acceptance
of a certain percent of changes (for instance 60%). In detail, the probability of
moving a vertex l positions (l = ±1, ...,±k) is Pr(l) = z ·min(1, exp(−∆(l)/T (|l|)),
where z is a normalization factor calculated by the demands

∑k
l=−k Pr(l) = 1 and

Pr(0) = z ·minl=±1,...,±k(1−Pr(l)/z). In each additional sweep T (|l|) is reduced by
a factor, such as 0.6. Typically only three such cooling steps are used.

Repeated heating and cooling is successively employed for better search over the
local landscape. This search is further enhanced by the introduction of a “memory”-
like tool consisting of an additional permutation which stores the Best-So-Far (BSF)
observed arrangement, which is being occasionally updated by a procedure called
Lowest Common Configuration (LCC) [18]. LCC enables the systematic accumula-
tion of sub-permutations over a sequence of different arrangements, such that each
BSF sub-permutation exhibits the best (minimal) sub-order encountered so far. The
cost of the obtained BSF is at most the lowest cost of all the arrangements it has
observed, and usually it is lower. The use of LCC becomes more important for
larger graphs, where it is expected that the optimum of a subgraph is only weakly
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dependent on other subgraphs. Due to the LCC procedure, it is not necessary
to wait in the stochastic annealing process until all minimal sub-permutations are
simultaneously obtained, which may take exponential time; instead it is sufficient
to obtain each such minimal sub-order just once, since henceforth it is guaranteed
to appear in the BSF. In detail, the BSF (of a certain level) is initialized by the ar-
rangement obtained at the end of the strict minimization. Then the BSF is improved
by the LCC procedure which updates parts of it taken from the new arrangements
reached right after each heating-cooling cycle. All these accumulated updates are
thus stored at the BSF, which thus represents the current calculated minimum. The
complete description of the LCC algorithm is given in [92].

The entire disaggregation procedure is summarized below in Algorithm 3. The
Algorithm is divided into two parts: the first approximation and the postprocessing
corresponding to the results supported later.

Algorithm 3: Disaggregation(coarse level C, fine level F)

Parameters: k1, ..., k5, γ (for chosen values consider the Appendix.)

FIRST APPROXIMATION :
Initialize F from C
Apply k1 sweeps of compatible relaxation on F

POSTPROCESSING :
Apply k2 sweeps of GS relaxation on F
Apply Window Minimization on F
Initialize BSF ← current arrangement of F
Do k3 cycles of heating and cooling

Calculate T (|l|) for l = 1, ..., k4

Do k5 steps
Apply SA within distance k4 on F
Decrease all T (|l|) by a factor γ

Apply Window Minimization on F
BSF = LCC(BSF, current arrangement of F)

Return BSF

3.4 Results and Related Works

We have implemented and tested the algorithm using standard C++, LAPACK++
[84] and LEDA libraries [74] on Linux 2.4GHz machine. The implementation is non-
parallel and has not been optimized. The results (order costs and running times)
should only be considered qualitatively and can certainly be further improved by
more advanced implementation.
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We have found only one article [50] with an implemented algorithm and numer-
ical results for M2sP. The algorithm is based on the spectral approach. Since this
test suite is relatively small to provide enough information regarding M2sP, we have
launched a new, much larger test suite which consists of 66 graphs from different
areas [37, 77], see Table 3.1. These graphs are divided into two groups according
to their size : the results for the smaller ones are introduced in Tables 3.2 and 3.3,
while those for the larger ones in Table 3.4. For all the graphs in Tables 3.2 and
3.3 we compare our results with those of the spectral approach. The numbers in
columns 4-5 (marked by “ML” and “ML+GS”) and 7-11 are in percentage above
the cost energy presented at the column “Quick” (e.g., the 0.8 appearing for the
first graph gd96c in column “ML” means that the initial cost energy is 3455 ·1.008).
The first approximation obtained by the multilevel V-cycle, i.e., the arrangement
obtained right after applying the compatible relaxation at the finest level is in-
troduced in the column “ML” of Tables 3.2 and 3.3. We run the algorithm 100
times (using the parameters specified in the Appendix for the “Quick” V-cycle),
each starts from a different permutation of the nodes. The best obtained results
are presented here. The means of the 100 runs are worse than the corresponding
“Quick”-values by an average of 0.51%, while the standard deviation (around the
means) is 0.69% on the average. The “ML” results should be compared to the spec-
tral approach results at column “SP” obtained by calculating the second eigenvector
of the Laplacian1 of the graph using MATLAB routine. It shows that the “ML”
algorithm provides much better results, shorter by an average of +34.4% (excluding
the statistics of bintree10, in which the improvement is much larger). Only in one
case, the 10-dimensional hypercube, the spectral approach provided a lower cost of
-2.8%. However, not only the obtained results are much worse. Even if the spectral
method leads to the correct order, the calculations must be performed with very
high accuracy. In fact, the precision of the second eigenvector coordinates must be
at least O(log |V |) and usually much better. This is not a trivial task while one uses
some approximation algorithm. Our results for the spectral approach were thus ob-
tained with 16-digits precision of an exact algorithm. The experiments with lower
precision or with approximation algorithms gave much poorer results. For example,
for the three graphs bcspwr10, airfoil1 and bcsstk38 the spectral costs with 5-digits
precision were 4.40E+07, 4.49E+07 and 1.20E+10 respectively, while increasing the
precision to 7-digits gave 1.64E+07, 1.93E+07 and 4.40E+09. The complexity of an
exact calculation of the second smallest eigenvector is O(|V |3) while the multilevel
algorithm is linear in the number of edges.

We have next tested the outcome of our postprocessing on both initial sets of

1The algebraic representation of a graph is given by its Laplacian A (a |V |× |V | matrix), whose
terms are defined by

Aij =






−wij for ij ∈ E, i 6= j

0 for ij 6∈ E, i 6= j∑
k 6=i wik for i = j .

(3.8)
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results. Most significant improvement was introduced by applying the Gauss-Seidel-
like relaxation, as can be seen in Tables 3.2 and 3.3 column “ML+GS” for the
multilevel algorithm and “+GS” for the spectral approach. The gap between the
two has been reduced, but the spectral approach still provides worse results on the
average by 7.1%. Next we have applied the window minimization which concludes
our, so called “Quick” V-cycle. Comparing columns “Quick” with the correspond-
ing “+WM” shows that the multilevel results remain better, the spectral ones are
worse by an average of 4.7%.

Finally, we introduced randomness by applying Simulated Annealing. In the
multilevel framework, the SA enters at all levels of the V-cycle. We refer to this
version as the “Extended” V-cycle (its complete parameters are given in the Ap-
pendix). While the “Quick” V-cycle is aimed at achieving fast performance, the
“Extended” V-cycle runs longer but succeeds in finding lower cost arrangements
on the average by 1%. The means of the 100 runs of the “Extended” V-cycles
are worse than the corresponding “Quick”-values by an average of 0.49% and the
average of the calculated standard deviations (around the means for 100 runs) of
the “Extended” V-cycle is 0.66%. We may conclude that the “Extended” V-cycle
is not really needed. Almost identical results are already obtained by the “Quick”
V-cycle, where the improvement is neither significant nor consistent, i.e., it is just
within the typical standard deviation. In column “+SA” of Tables 3.2 and 3.3 we
present the results obtained after adding SA to the spectral approach followed by
the above postprocessing. The improvement is again of only 1%. Our last test was
to run a very long SA after the postprocessing with the spectral approach, aiming at
achieving comparable amount of work to 100 “Extended” V-cycles. These results
are given in column “HSA”. While improvement is naturally observed, the results
on the average remain worse by about 2%, while for 6 graphs out of 37 it is worse
by more than 5%.

In addition, we present the spectral lower bounds [50] for the smaller graphs (see
Tables 3.2 and 3.3, column “LB”) and calculate the gap (see Tables 3.2 and 3.3,
column “∆Quick”) between our results and the spectral lower bound. In spite of
the fact that it is impossible to judge which costs are closer to the real minima, we
may state that no significant indications of the existence of these lower costs were
observed: in 16 out of 37 graphs our results were within 25% of the lower bounds,
but on the average they were 75.4% longer.

To enrich our test suite, we present in Table 3.4 our “Quick” V-cycle results
for additional 29 relatively large graphs. No spectral approach results are provided
since we were not able to run (on the computers available to us) the MATLAB
routine and calculate the needed eigenvector. Each result is again the best observed
out of 100 runs, for which the means for 100 runs are worse than the corresponding
“Quick”-values by an average of 0.55% and the average standard deviation is 0.47%.

The running time of the algorithm is presented in Table 3.6. In column “TQuick”
we present the running time of one V-cycle which corresponds to the “Quick”
column in Tables 3.2, 3.3 and 3.4. The running time of the suggested postprocessing
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added after the spectral ordering was measured for the graphs from Tables 3.2,
3.3 and we show it in column “TPost”. The running time of the postprocessing
corresponds to the values introduced in the “+SA” column of Tables 3.2 and 3.3.
The dash notation (“-”) corresponds to the graphs from Table 3.4 that were too
large for usual MATLAB spectral calculation routines. In both cases the running
time is measured in minutes. The star notation (“*”) can be interpreted as “less
than one second”.

3.5 Conclusions

We have presented a multilevel algorithm for the minimum p-sum problem for gen-
eral graphs. The algorithm is based on the general principle that during coarsening
each vertex may be associated to more than just one aggregate according to some
“likelihood” measure. The uncoarsening initialization, which produces the first ar-
rangement of the fine graph nodes, strongly relies on energy considerations (unlike
usual interpolation in classical AMG). This initial order is further improved by
Gauss-Seidel-like relaxation, window minimization and possibly by employing ran-
domness, i.e., simulated annealing. The running time of the algorithm is linear, thus
it can be applied to very large graphs.

We have compared our results to those obtained by the spectral approach. The
calculation of the second eigenvector of the Laplacian of the graph has to be of
high accuracy to provide reasonable results. Such a direct computation is of com-
plexity O(|V |3). Still, the obtained results are much worse than the initial results
obtained by our multilevel V-cycle by 34.4% on the average for the smaller sized
test suite. In addition, we have applied postprocessing to both initial arrangements.
The Gauss-Seidel-like relaxation improves both results most significantly. The win-
dow minimization further reduces the arrangement cost for some graphs. The final
results show that the multilevel framework achieves better results of 4.7% on the
average. Finally, we have added stochastisity to both algorithms. Both results were
improved by about 1%. We have also tried to apply a very long SA to the final re-
sults of the postprocessing of the spectral approach. Many results have been further
improved, however, some graphs (6 out of 37) still present results higher by more
than 5%.

Our main conclusion is that the average and the best results of our V-cycles are
better than the results of the spectral approach. We recommend our multilevel al-
gorithm as a general practical method for solving the minimum p-sum problem and
as a fast and high-quality method for obtaining first approximation for it. The imple-
mented algorithm can be obtained at http://www.wisdom.weizmann.ac.il/∼safro/min2sum.
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Appendix: Parameters

In order to control the running time of the algorithm it is important to decrease
the total number of edges of the constructed coarse graphs. This is achieved by
the following two parameters: the maximum allowed coarse neighborhood size r,
which restricts the allowed size |Ni| of the coarse neighborhood of a vertex i ∈ F
by deleting the weakest wij, j ∈ C; and the edge filtering ǫ threshold, which deletes
every relatively weak edge ij (from the created coarse graph) if both wij < ǫ · si
and wij < ǫ · sj, where si =

∑
k wik.

These two parameters and five others which control the uncoarsening procedure
(see Algorithm 3) are presented in Table 3.5 for the “Quick” and “Extended”
V-cycles we have used. The last two parameters within the SA (of Algorithm 3)
were constantly chosen to be k5 = 4 and γ = 0.6.

It is however important to mention that these parameters are the ones used
only for the finest levels. As the coarse graphs become much smaller they are
accordingly increased. This hardly affects the entire running time of the algorithm
but systematically improves the obtained results. In the last column of Table 3.5
we specifically describe the increase introduced for each parameter as a function of
level L, which usually depends on the ratio R = max(1, |E0|/|EL|) measuring the
relative decrease of the number of edges at level L compared with the original graph.

We tested many options for the window sizes in Algorithm 2. Usually these sizes
were relatively small and very robust to changes. In our implementation we used
WinSizes = {5, 10, 15, 20, 25, 30}, however similar results were obtained with other
sets of windows, for example, WinSizes = {5, 9, 17, 23, 29}.
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Table 3.1: Benchmark for the minimum 2-sum problem.

Graph |V| |E| Graph |V| |E|
gd96c 65 125 nasa1824 1824 18692
gd95c 62 144 randomA2 1000 24738
gd96b 111 193 nasa2146 2146 35052
gd96d 180 228 bcsstk13 2003 40940
dwt245 245 608 whitaker3 9800 28989
bintree10 1023 1022 zcrack 10240 30380
bus685 685 1282 shuttleeddy 10429 46585
bus1138 1138 1458 randomA3 1000 49820
gd96a 1096 1676 nasa4704 4704 50026
can445 445 1682 bcsstk24 3562 78174
c1y 828 1749 bcsstk38 8032 173714
c2y 980 2102 finan512 74752 261120
bcspwr08 1624 2213 bcsstk33 8738 291583
bcspwr09 1723 2394 bcsstk29 13830 302424
c5y 1202 2557 ocean 143437 409593
jagmesh1 936 2664 tooth 78136 452591
c3y 1327 2844 mrng1 257000 505048
c4y 1366 2915 bcsstk37 25503 557737
dwt918 918 3233 msc23052 23052 559817
dwt1007 1007 3784 bcsstk36 23052 560044
jagmesh9 1349 3876 bcsstk31 35586 572913
can838 838 4586 msc10848 10848 609464
randomA1 1000 4974 ferotor 99617 662431
hc10 1024 5120 bcsstk35 30237 709963
can1054 1054 5571 598a 110971 741934
can1072 1072 5686 bcsstk32 44609 985046
randomG4 1000 8173 bcsstk30 28924 1007284
randomA4 1000 8177 144 144649 1074393
bcspwr10 5300 8271 ct20stif 52329 1273983
bcsstm13 649 9949 m14b 214765 1679018
dwt2680 2680 11173 mrng2 1017253 2015714
airfoil1 4253 12289 auto 448695 3314611
bcsstk12 1423 16342 pwtk 217918 5653257
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Table 3.2: Results (small graphs).

Graph LB ∆Quick ML ML+GS Quick SP +GS +WM +SA HSA
gd96c 1.25E+03 176.9 0.8 0.3 3.45500E+03 46.0 5.8 0.0 0.0 0.0
gd95c 1.13E+03 232.9 0.8 0.0 3.75500E+03 26.2 0.3 0.0 0.0 0.0
gd96b 2.43E+03 684.8 8.7 0.0 1.90860E+04 53.7 1.3 1.1 1.0 1.0
gd96d 3.74E+04 46.3 8.2 1.0 5.47390E+04 87.0 1.0 0.2 0.1 0.0
dwt245 4.34E+04 45.8 2.9 0.4 6.32810E+04 80.4 2.6 0.8 0.8 0.0
bintree10 8.85E+04 53.2 11.2 0.0 1.35656E+05 16394.2 38.8 11.3 10.3 6.4
bus685 1.43E+05 50.8 9.6 0.2 2.15744E+05 44.9 9.8 7.0 7.0 6.6
bus1138 4.00E+05 38.0 6.7 0.4 5.52111E+05 76.5 7.4 1.8 0.9 0.4
gd96a 2.83E+06 430.0 13.6 0.1 1.49741E+07 124.4 31.3 25.2 21.9 15.9
can445 1.57E+06 5.0 1.2 0.0 1.65431E+06 6.0 0.8 0.6 0.6 0.6
c1y 5.56E+06 41.4 8.2 0.0 7.86685E+06 121.1 5.6 4.6 4.3 4.2
c2y 8.74E+06 22.7 7.3 0.0 1.07286E+07 61.2 0.9 0.6 0.3 0.3
bcspwr08 7.97E+05 17.8 5.6 0.4 9.39437E+05 48.6 13.0 11.2 9.1 1.9
bcspwr09 7.91E+05 28.7 5.8 0.5 1.01801E+06 71.8 25.5 22.5 22.0 11.3
c5y 1.16E+07 21.2 7.2 0.0 1.39958E+07 130.5 10.8 9.6 8.4 6.4
jagmesh1 8.27E+05 5.1 2.5 0.1 8.68459E+05 14.2 12.6 12.2 11.8 1.1
c3y 1.55E+07 27.0 7.0 0.0 1.97321E+07 142.7 7.5 2.5 0.8 0.7
c4y 1.44E+07 15.0 8.2 0.0 1.66028E+07 51.8 2.1 1.4 0.2 0.0
dwt918 5.46E+05 51.0 5.1 0.1 8.25233E+05 11.5 1.4 0.9 0.3 0.0
dwt1007 8.86E+05 15.9 1.4 0.0 1.02750E+06 4.3 2.2 1.9 1.7 0.0
(continued)
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Table 3.3: Results (small graphs) - continuation. The average results are calculated for all the 37 graphs of Tables 3.2 and 3.3.

Graph LB ∆Quick ML ML+GS Quick SP +GS +WM +SA HSA
jagmesh9 1.10E+06 27.4 5.2 0.2 1.39541E+06 10.3 6.3 4.5 1.6 0.9
can838 7.02E+06 5.8 0.4 0.0 7.43012E+06 1.8 0.1 0.1 0.0 0.0
randomA1 7.03E+07 321.8 34.9 1.8 2.96618E+08 49.7 18.2 9.7 4.9 1.1
hc10 1.79E+08 0.0 3.6 0.0 1.78957E+08 0.8 0.1 0.1 0.0 0.0
can1054 5.79E+06 9.9 0.2 0.1 6.36257E+06 2.0 0.1 0.1 0.0 0.0
can1072 8.17E+06 6.5 3.6 0.0 8.70400E+06 3.6 0.1 0.0 0.0 0.0
randomG4 7.33E+06 5.0 6.9 0.0 7.70221E+06 7.8 1.1 0.8 0.6 0.1
randomA4 3.01E+08 125.6 18.3 4.3 6.78008E+08 31.2 15.3 5.7 0.9 0.4
bcspwr10 1.19E+07 15.0 10.5 0.2 1.37238E+07 19.0 4.9 4.1 3.0 2.3
bcsstm13 2.23E+07 77.2 0.5 0.0 3.94573E+07 31.7 0.8 0.6 0.3 0.0
dwt2680 7.31E+06 25.6 4.2 0.0 9.18901E+06 5.2 0.3 0.1 0.0 0.0
airfoil1 1.18E+07 37.9 8.9 0.1 1.63343E+07 18.4 7.2 5.9 2.7 1.1
bcsstk12 1.71E+07 20.6 7.7 0.1 2.06281E+07 19.2 11.9 10.2 6.8 5.9
nasa1824 1.37E+08 3.1 5.8 0.0 1.41216E+08 24.0 7.9 4.2 1.1 0.3
randomA2 2.21E+09 33.5 12.8 4.1 2.95112E+09 12.9 5.1 0.3 0.1 0.0
nasa2146 1.11E+08 11.3 5.3 0.1 1.23584E+08 6.6 4.3 4.2 4.0 2.1
bcsstk13 4.35E+08 54.4 3.4 0.0 6.71461E+08 40.2 14.8 9.3 3.0 2.7
AVERAGE 75.4 6.9 0.4 41.3 7.5 4.7 3.5 2.0
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Table 3.4: Results (large graphs).

Graph Quick Graph Quick
whitaker3 6.53774E+07 msc23052 6.58277E+10
zcrack 1.36390E+08 bcsstk36 6.58053E+10
shuttleeddy 1.36200E+08 bcsstk31 7.45410E+10
randomA3 6.63612E+09 msc10848 5.95150E+10
nasa4704 7.54695E+08 ferotor 2.67776E+11
bcsstk24 9.06089E+08 bcsstk35 7.51880E+10
bcsstk38 3.87606E+09 598a 3.85388E+11
finan512 1.00967E+10 bcsstk32 1.46284E+11
bcsstk33 2.97010E+10 bcsstk30 5.11256E+10
bcsstk29 1.06444E+10 144 1.55347E+12
ocean 1.16999E+11 ct20stif 6.77425E+11
tooth 3.38761E+11 m14b 1.67209E+12
mrng1 6.69398E+11 mrng2 1.93775E+13
bcsstk37 6.77934E+10 auto 1.33598E+13

pwtk 2.25527E+12

Table 3.5: The parameters used for the “Quick” and “Extended” V-cycles.

Parameter “Quick” “Extended” The increase
V-cycle V-cycle for level L

The coarse neighborhood size (r) 10 10 +log(R)

The edge filtering threshold (ǫ) 0.001 0.001 ·0.9log(R)

Compatible relaxation sweeps (k1) 5 10 +2 · L
GS relaxation sweeps (k2) 5 10 +2 · L
Heating and cooling in SA (k3) 0 3 ·log(R)

k4 used in the SA 0 5 +log(
√
R)
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Table 3.6: Running time

Graph TQuick TPost Graph TQuick TPost

gd96c * * nasa1824 0.05 0.17
gd95c * * randomA2 0.26 0.27
gd96b * * nasa2146 0.1 0.38
gd96d * * bcsstk13 0.1 0.44
dwt245 * 0.01 whitaker3 0.15 -
bintree10 * 0.02 zcrack 0.13 -
bus685 * 0.02 shuttleeddy 0.15 -
bus1138 0.05 0.04 randomA3 0.42 -
gd96a 0.04 0.05 nasa4704 0.11 -
can445 * 0.02 bcsstk24 0.14 -
c1y * 0.02 bcsstk38 0.3 -
c2y 0.02 0.03 finan512 1.2 -
bcspwr08 0.04 0.05 bcsstk33 0.65 -
bcspwr09 0.05 0.06 bcsstk29 0.6 -
c5y 0.02 0.06 ocean 7.5 -
jagmesh1 0.04 0.04 tooth 2.5 -
c3y 0.02 0.05 mrng1 12.3 -
c4y 0.02 0.05 bcsstk37 1.3 -
dwt918 * 0.04 msc23052 1.25 -
dwt1007 * 0.04 bcsstk36 1.3 -
jagmesh9 0.05 0.07 bcsstk31 1.9 -
can838 * 0.04 msc10848 1.1 -
randomA1 0.1 0.11 ferotor 4.7 -
hc10 0.065 0.06 bcsstk35 1.6 -
can1054 * 0.07 598a 6.4 -
can1072 * 0.05 bcsstk32 2.9 -
randomG4 0.02 0.07 bcsstk30 2 -
randomA4 0.15 0.18 144 10.3 -
bcspwr10 0.09 0.17 ct20stif 4.7 -
bcsstm13 0.04 0.14 m14b 17.5 -
dwt2680 0.05 0.12 mrng2 143 -
airfoil1 0.06 0.19 auto 64.3 -
bcsstk12 0.05 0.17 pwtk 20 -
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CHAPTER 4

Multilevel algorithms for linear ordering problems

4.1 Introduction

The objective of the class of linear ordering problems is to minimize different func-
tionals that map the set of the graph vertices onto (1, 2, ..., n). This class contains
many graph (or matrix) layout problems such as : the minimum p-sum, the work-
bound reduction, the wavefront, the envelope size, etc. Some problems, such as
finding the minimum linear arrangement [92] or the bandwidth [70], appear in many
applications for solving problems in the large sparse matrix computation. Some
other are closely related to the problem of calculating the envelope size of a sym-
metric matrix or, more precisely, to the amount of work needed in the Cholesky
factorization of such a matrix [50]. Linear ordering problems may also be motivated
as a model used in VLSI design [30] and may be used in several biological applica-
tions, graph drawing and other fields (see [39, 70, 57, 96]). Commonly for general
graphs (or matrices) these problems are NP-hard and their decision versions are
NP-complete [48].

Since these problems have a practical significance, many heuristic algorithms
were developed in order to achieve near optimal solution. Among the most successful
are spectral sequencing [62], optimally oriented decomposition tree [6], multilevel
based [68, 59], simulated annealing [79] and others. Some of these algorithms have
proven themselves superior in solution quality while others in execution time.

One of the most popular and exploitable methods designed to achieve a suitable
linear ordering for different problems is the spectral sequencing (SS) [62]. This
approach consists of ordering the graph vertices according to the sorted coordinates
of the second eigenvector of the graph Laplacian. The heuristic argumentation of
SS is based on the fact that the continuous version of the minimum 2-sum problem
can be solved by this method to the optimum [62]. In practice, for the (discrete)

63
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minimum 2-sum it was shown in [93] that the direct application of SS (without
additional reinforcement postprocessing) on ”real world instances” does not achieve
good enough results, while the lower bounds based on SS are very far from the best
known ordering costs. Rather poor results of the exact SS were presented in [35]
for the minimum bandwidth problem. Better results were shown there by using
different approximated SS, i.e., by calculating the second eigenvector less precisely.
In fact, they have tested 19 algorithms (17 of which are different versions of SS) and
presented the best achieved results among all. In Section 4.4 we show the significant
improvement achieved by our algorithm over all those algorithms, on the average
our results were better by 34%.

In this paper we present a general framework of multilevel algorithms especially
designed for linear ordering problems. Our strategy is based on the Algebraic Multi-
Grid scheme (AMG) [15, 16, 12, 22, 89, 99, 100]. While in previous works we have
developed and tested special multilevel algorithms for solving the minimum linear
arrangement problem [92] and the minimum 2-sum problem [93], in this article we
demonstrate how the building blocks of the general multilevel approach can be used
in various ways to make it suitable for solving more involved functionals. In par-
ticular, we present two algorithms : we show how the bandwidth of a graph can
be approximated by a continuation approach in which a sequence of increasingly
p-sum problems are involved until p is large enough to be considered infinite for
practical purposes; in addition, we use the minimum 2-sum problem result as a first
approximation for the workbound reduction problem, which is then improved by a
postprocessing of local minimizations with actual use of the workbound functional.
In fact, we propose to use the ordering obtained by the minimum 2-sum problem
as a first approximation for other linear ordering problems, as demonstrated for the
wavefront reduction problem.

The main objective of a multilevel based algorithm is to create a hierarchy of
problems, each representing the original problem, but with fewer degrees of free-
dom. General multilevel techniques have been successfully applied to various areas
of science (e.g. physics, chemistry, engineering, etc.) [14, 17]. AMG methods were
originally developed for solving linear systems of equations resulting from the dis-
cretization of partial differential equations. Lately they have been applied to various
other fields, yielding for example novel methods for image segmentation [97] and for
the linear arrangement problem [92]. In the context of graphs it is the Laplacian
matrix that represents the related set of equations. The main difference between our
approach to most other multilevel approaches (related to various graph optimization
problems) is the coarsening scheme. While the previous approaches may be viewed
as strict aggregation process, the AMG coarsening is actually a weighted aggregation
: each node may be divided into fractions, and different fractions belong to differ-
ent aggregates. This enables more freedom in solving the coarser levels and avoids
making hardened local decisions, such as edge contractions, before accumulating the
relevant global information.

One of the important achievements of our work is the general coarsening that
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turns to be suitable for all the different functionals we have tested. This fact can be
explained by the way the hierarchy of problems is constructed: variables are elimi-
nated within the coarsening phase only and exactly when they show strong dominant
connections to the remaining (non-eliminated) variables, this in turn guarantees that
the solution of the eliminated variables is naturally obtained once the non-eliminated
variables are solved. The various algorithms thus differ in the disaggregation pro-
cess which follows by projecting to a finer level the final arrangement obtained on
a coarser level. This initial fine level arrangement is being further improved by
applying different local reordering methods. We have developed a simultaneous
minimization of several vertices called Window Minimization. In its basic applica-
tion (for the 2-sum problem [93]) it involves the minimization of a quadratic form.
Here we show how to quadratize other functionals. Also, we suggest the use of
numerical calculation rather than analytic, for instance, in calculating derivatives.
Finally, our postprocessing is intensified by Simulated Annealing (SA) [67] which is
a general method to escape local minima. In the multilevel framework SA is aimed
at searching only for local changes that guarantee the preservation of large-scale
solution features inherited from coarser levels.

We will not discuss here theoretical complexity issues, such as lower and up-
per bounds for the solution cost. We are not interested in worst possible scenarios
nor in random instances. Our focus is on practical high-performance and low com-
putational cost algorithms that will outperform existing algorithms by providing
better results in less running time. For that purpose we used a known benchmark
[37] from which we took graphs of various origins and sizes including very large in-
stances. Our multilevel algorithm exhibit linear complexity, i.e., the computational
cost is proportional to |V |+ |E|.

We compared the results obtained by our multilevel algorithms with many pre-
viously described algorithms. In this paper we present the results of the bandwidth
problem and the workbound problem and show that our results are on the average
better than previous ones by about 30%, while the running time for graphs with
about 104 nodes and 105 edges is less than one minute. In general, our experimental
results show that the AMG framework can be used for linear ordering problems to
obtain high quality results in linear time while using the exact same set of parame-
ters. The implemented algorithm can be downloaded from [90].

The various functionals and their generalizations are described in Sec. 2. The
multilevel algorithm along with additional optimization techniques are presented in
Sec. 3. A comparison of our results with other works is finally summarized in Sec.
4.

4.2 Definitions and generalizations

Given a weighted graph G = (V, E), where V = {1, 2, ..., n}, denote by wij the
non-negative weight of the edge ij between nodes i and j; if ij /∈ E then wij = 0.
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Let π be a bijection
π : V −→ (1, 2, ..., n) .

The purpose of linear ordering problems is to minimize some functional over all
possible permutations π. The following functional should be minimized for the
minimum p-sum problem1 :

σp(G, π) =
∑

ij

wij|π(i)− π(j)|p . (4.1)

In the generalized form of the problem that emerges during the multilevel solver,
each vertex i is assigned with a volume (or length), denoted vi. The task now is
to minimize the cost σp(G, x) =

∑
ij wij|xi − xj|p, where xi = vi

2
+
∑

k,π(k)<π(i) vk,
i.e., each vertex is positioned at its center of mass capturing a segment on the
real axis which equals its length. The original form of the problem is the special
case where all the volumes are equal. In particular, we would like to concentrate
on the minimum bandwidth problem which seeks a linear layout that minimizes the
maximal stretched edge, i.e., bw(G) = minπ maxij wij|π(i)−π(j)|. The minimization
functional of the bandwidth problem can be formulated in term of σp(G, π) :

bw(G, π) = lim
p→∞

(σp(G, π))1/p . (4.2)

The minimization functional of the workbound reduction problem is defined as

wb(G, π) =
∑

i

max
j

π(j)<π(i)

wij(π(i)− π(j))2 . (4.3)

The generalized form of this problem is similar to the above derivation, and the max
function may be approximated by

wb(G, x) =
∑

i

max
j:xj<xi

wij(xi − xj)2 ≈
∑

i

( ∑

j:xj<xi

wij(xi − xj)p
)2/p

. (4.4)

4.3 The algorithm

In the multilevel framework a hierarchy of decreasing size graphs : G0, G1, ..., Gk is
constructed. Starting from the given graph, G0 = G, create by recursive coarsening
the sequence G1, ..., Gk, then solve the coarsest level Gk directly, and finally un-
coarsen the solution back to G. This entire process is called a V -cycle. As in the
general AMG setting, the choice of the coarse variables (aggregates), the derivation
of the coarse problem which approximates the fine one and the design of the coarse-
to-fine disaggregation (uncoarsening) process are all determined automatically, as
described below.

1We use this definition for simplicity, while the usual definition of the functional is σp(G, π) =
(
∑

ij wij |π(i)− π(j)|p)1/p, which yields of course the same minimization problem.
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4.3.1 Coarsening: Weighted Aggregation

The coarsening used here is similar to the process we have used in solving the
minimum linear arrangement and the minimum 2-sum problems [92, 93]. For com-
pleteness we briefly repeat its description. The coarsening is interpreted as a process
of weighted aggregation of the graph nodes to define the nodes of the next coarser
graph. In a strict aggregation process (also called edge contraction or matching of
vertices) the nodes are blocked in small disjoint subsets, called aggregates. Two
nodes i and j would usually be blocked together (put in the same aggregate) if their
coupling is strong, meaning that wij is comparable to min{maxkwik,maxkwkj}. In
weighted aggregation, each node can be divided into fractions, and different frac-
tions belong to different aggregates. In both cases, these aggregates will form the
nodes of the coarser level, where they will be blocked into larger aggregates, forming
the nodes of a still coarser level, and so on. As AMG solvers have shown, weighted,
instead of strict, aggregation is important in order to express the likelihood of nodes
to belong together; these likelihoods will then accumulate at the coarser levels of
the process, indicating tendencies of larger scale aggregates to be associated to each
other (see [100] for a deep explanation). Strict aggregation, by contrast, may run
into a conflict between the local blocking decision and the larger-scale picture.

The construction of a coarse graph from a given one is divided into three stages:
first a subset of the fine nodes is chosen to serve as the seeds of the aggregates
(which become the nodes of the coarse graph), then the rules for interpolation are
determined, thereby establishing the fraction of each non-seed node belonging to
each aggregate, and finally the strength (or weight) of the connections (or edges)
between the coarse nodes is calculated.

Coarse Nodes. The construction of the set of seeds C and its complement,
denoted by F , is guided by the principle that each F -node should be “strongly
coupled” to C. Also, we will include in C nodes with exceptionally large volume,
or nodes expected (if used as seeds) to aggregate around them exceptionally large
volumes of F -nodes. To achieve these objectives, we start with an empty set C,
hence F = V , and then sequentially transfer nodes from F to C until all remaining
i ∈ F satisfy ∑

j∈C

wij/
∑

j∈V

wij ≥ Q ,

where Q is a parameter; Q = 0.4 is used in the reported experiments.

Note that it is thus guaranteed that every F -node has strong dominant connec-
tions to the C-nodes which are uniquely associated to the coarse aggregates. This
in turn means that once an order of the desired functional is obtained among the
aggregates, an initial order of a finer level naturally follows (see Section 4.3.3). This
reasoning explains why the same coarsening is successful for the various functionals.

The Coarse Problem. Each node in the chosen set C becomes the seed of an
aggregate that will constitute one coarse level node. Define for each i ∈ F a coarse
neighborhood Ni = {j ∈ C, wij ≥ αi}, where αi is determined by the demand
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that |Ni| does not exceed the allowed coarse neighborhood size r chosen to control
complexity. (For typical values of r consider the Appendix). The classical AMG
interpolation matrix P (of size |V | × |C|) is defined by

Pij =






wij/
∑
k∈Ni

wik for i ∈ F, j ∈ Ni

1 for i ∈ C, j = i
0 otherwise .

(4.5)

Pij thus represents the likelihood of i to belong to the j-th aggregate. Let I(k) be
the ordinal number in the coarse graph of the node that represents the aggregate
around a seed whose ordinal number at the fine level is k. Following the weighted
aggregation scheme used in [97], the edge connecting two coarse aggregates, p = I(i)

and q = I(j), is assigned with the weight w
(coarse)
pq =

∑
k 6=l PkiwklPlj. The volume

of the i-th coarse aggregate is
∑

j vjPji. Note that during the process of coarsening
the total volume of all vertices is conserved.

4.3.2 The coarsest level

Minimizing the appropriate functional at the coarsest level, which consists of no
more than 8 nodes (otherwise a still coarser level would be introduced for efficiency)
is performed directly by simply trying all possible arrangements. Since the amount
of work invested at the coarsest levels is small compared with that of the finest level,
many solutions can in fact be kept at each level whose graph is small relative to G.
In principle, this number depends on the amount of work associated with the graph
parameters of that level. In particular, a large number of solutions is chosen at the
coarsest level; they are chosen so that they all enjoy a relatively low energy cost and
are mutually significantly different from each other. Each is then propagated to the
next finer level and being optimized there. The best solutions are chosen using the
same criteria, and so on. This variety of solutions enlarges the range of the search
by either extracting different best solutions or combining them using LCC [92].

Since we wanted to measure the standard deviation for our algorithm, we have
run it a few times for each of the given graphs by starting with a different permu-
tation of the nodes of G (see Section 4.4.2). Experiments show that the variety of
solutions generated thus is similar to those obtained by a single run with multitude
of solutions at the coarsest levels, thus it became less important to also use the later.
Still this approach has proven to work well for [87].

4.3.3 Disaggregation (uncoarsening)

While the same identical coarsening procedure was used for the minimization of all
our functionals, the uncoarsening only shares the same basic structure, but the ac-
tual implementation varies from one functional to another. Having solved a coarse
problem, the solution to the next-finer-level problem is initialized by first placing
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the seeds according to the coarse order and then adjusting all other F -nodes while
aiming at the minimization of the arrangement cost. This first approximation is
subsequently improved by several relaxation sweeps, first compatible, then regu-
lar (explained below). Then, the arrangement is improved by strict minimization,
possibly with added stochasticity. These are the local reordering processes which
either accept only changes that decrease the arrangement cost (strict minimization)
or might also accept steps which increase the cost (with some probability) in order
to escape false local minima (simulated annealing). The entire scheme is explained
below and summarized in Algorithm 2.

Before we turn to the details of these common stages of the disaggregation pro-
cess, let us describe the particular structure we have used for the minimum p-sum
problem. The disaggregation scheme for the minimization of σp(G, x) is based on
continuation in the parameter p, such that p = 2 is used to exactly solve the coars-
est level, and then, at each subsequent finer level, p is increased (e.g. by two).
Thus, every level l (other than the coarsest) minimizes σp(Gl, x) by initialization
from σp−2(Gl+1, x). Except that in cases where the desired p is already reached on
one of the coarse levels, no further continuation is employed beyond that level. Our
experiments show that the results are not sensitive to small changes in the contin-
uation of p, e.g., solving the coarsest level with p = 4, or increasing p by four. In
case where p should tend to infinity (as for the bandwidth (4.2)), the increase of p
is continued also at the end of the V-cycle in a postprocessing procedure.

Initialization of the next finer level

Given is the arrangement of the coarse level aggregates in its generalized form,
where the center of mass of each aggregate j ∈ C is positioned at xI(j) along the
real axis. We begin the initialization of the fine level arrangement by letting each
seed j ∈ C inherit the position of its respective aggregate: yj = xI(j). At each stage
of the initialization procedure, define V ′ ⊂ V to be the subset of nodes that have
already been placed, so we start with V ′ = C. Then proceed by positioning each
fine node i ∈ V \ V ′ at the coordinate yi in which the cost of the arrangement, at
that moment when i is being placed, is minimized. The sequence in which the nodes
are placed is roughly in decreasing order of their relative connection to V ′, that is,
the nodes which have strong connections to V ′ compared with their connections to
V are placed first. To be precise, for the minimum p-sum problem the coordinate yi
is located at its minimum (volumes are not taken into account)

• if p = 1 then yi ∈ {y : |∑yj<y, j∈V ′ wij −
∑

yj>y, j∈V ′ wij| is minimal}, i.e.,
yi is within the median segment,

• if p = 2 then yi =
P

j∈V ′ yjwij
P

j∈V ′ wij
, i.e., yi is placed at the weighted average position

of yj, j ∈ V ′, to which yi is connected,

• for a general (even) p the location of yi has to minimize
∑

j∈V ′ wij(yi − yj)p.
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This is achieved numerically by several steps of Newton-Rhapson method start-
ing at the p = 2 solution.

Then V ′ ← V ′ ∪ {i} and the process continues until V ′ = V . Finally each
position yi is changed to

xi =
vi
2

+
∑

yk<yi

vk , (4.6)

thus retaining order while taking volume (length) into account.

Relaxation

The arrangement obtained after the initialization is a first feasible solution for the
minimum p-sum problem which is then improved by employing several sweeps of
relaxation, first compatible then Gauss-Seidel-like. These two types of relaxation
are very similar to the above initialization: The compatible relaxation, motivated in
[13], improves the positions of the F -nodes one by one according to the minimization
criteria above (where V ′ = V ) while keeping the positions of the seeds (C-nodes)
unchanged. The Gauss-Seidel-like relaxation is similarly performed, but for all nodes
(including C). Each such sweep is again followed by (4.6).

Window Minimization

The cost of the arrangement can be further reduced by strict minimization, i.e., a
sequence of rearrangement that accepts only changes which decrease the arrange-
ment cost. Since done in the multilevel framework, it can be restricted at each
level to just local changes, i.e., reordering small sets of neighboring nodes, which are
adjacent (or relatively close) to each other at the current arrangement. It is easy
to see that switching positions between several adjacent nodes is inexpensive, since
the resulting new arrangement cost can be calculated only at the vicinity of the
adjustment and not elsewhere. Such a node by node minimization was applied in
our algorithm for the Minimum Linear Arrangement problem (1-sum problem, see
[92]). This method may also be used for any functional. However, for the minimum
2-sum problem we have introduced a more advanced method of local minimization,
called Window Minimization (WM), which is suitable not only for the multilevel
framework but can also be used as local postprocessing relaxation in other frame-
works (like the spectral approach). The difference between WM and simple node by
node minimization is that WM simultaneously minimizes the arrangement cost of
a small number of nodes (e.g., 5 to 20).

We first describe the basic WM involving the quadratic form for p = 2 [93],
then possible generalizations are presented. Given a current approximation x̃ to
the arrangement of the graph, denote by δi a correction to x̃i. Let W = {i1 =
π−1(s+1), ..., iq = π−1(s+ q)} be a window, i.e., q successive vertices in the current
arrangement, positioned at x̃i1 , ..., x̃iq . The local minimization problem of the p = 2
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functional associated with a given window W can be formulated as follows :

minimize σ2(W, x̃, δ) =
∑

i,j∈W

wij(x̃i + δi − x̃j − δj)2 +
∑

i∈W
j 6∈W

wij(x̃i + δi − x̃j)2. (4.7)

To prevent the possible convergence of many coordinates to one point, and, more
precisely, to express the aim of having {xi + δi}i∈W an approximate permutation of
{xi}i∈W one should add constraints of the form

∑

i∈W

(x̃i + δi)
mvi =

∑

i∈W

x̃i
mvi , m = 1, 2 (4.8)

where for m = 2 we have neglected the quadratic term in δi. Note that the sums∑
i∈W x̃i

mvi for m = 1, 2 are invariant under permutations. Using Lagrange multi-
pliers, the final formulation of the WM for p = 2 is :

minimize σ2(W, x̃, δ, λ1, λ2) = σ2(W, x̃, δ) + λ1

∑

i∈W

δivi + λ2

∑

i∈W

δivix̃i , (4.9)

under the second and third constraints of (4.10) below, yielding the following system
of equations:





∑
j∈Wwij(δi − δj) + δi

∑
j 6∈Wwij + λ1vi + λ2vix̃i =

∑
j wij(x̃j − x̃i) for i = 1, ..., q∑

i δivi = 0∑
i δivix̃i = 0 .

(4.10)
Usually in a correct multilevel framework, the changes δi are supposed to be

relatively small since the global approximation for the arrangement is inherited
from the coarser levels. Their smallness is effected by the very restriction of the
minimization to one window at a time. After solving the system (4.10), every vertex
i ∈W is thus positioned at yi = x̃i + δi. Feasibility with respect to the volumes of
the nodes is retained by applying (4.6). Since the size and location of W are quiet
arbitrary, the energy cost of the new sub-arrangement can be further improved by
Gauss-Seidel-like relaxation sweeps applied to an enlarged window W, where, say
5% of the window’s size at each end (if possible) are added to W. As usual, each
sweep is followed by (4.6). The final obtained energy cost is then compared with the
one prior to all the window changes, the minimum of the two is accepted, updating
x̃.

A sweep of WM with a given window size q consists of a sequence of overlapping
windows, starting from the first node in the current arrangement and stepping by
⌊ q

2
⌋ for each additional window. One such sweep is employed for every given q, while

a small number of different q’s is used (for actual values see Sections 4.4.2, 4.4.3 and
the Appendix). Our experiments show that the algorithm is robust to changes in
the chosen q’s. Note that due to the multiscale framework, only bounded values of
q need be used, which guarantees linear execution time of the entire algorithm. The
WM is summarized in Algorithm 1.
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Algorithm 1: WindowMinimization(graph G, current order x̃, window length q)
Parameter: k1 (see the Appendix)
For i = 1 To |V | − q + 1 Step i = i+ ⌊ q

2
⌋

W = {π−1(i), ..., π−1(i+ q − 1)}
Solve the system of equations (4.10)
Apply k1 sweeps of Gauss-Seidel-like relaxation on the enlarged W with x̃+ δ
x̃← x̃+ δ if the cost of the arrangement was decreased

Return x̃

The use of WM for non-quadratic functional is achieved by quadratization. For
p > 2, define ŵij = wij(x̃i − x̃j)p−2 and the WM follows by substituting wij with
ŵij in (4.7) and (4.10). For the bandwidth problem, where p should tend to infinity,
additional WM sweeps with further increasing of p are employed at the end of the
V-cycle as a postprocessing procedure. More details are provided in Section 4.4.2.

A more involved example is the workbound reduction problem. Using (4.4), the
respective functional for W can be approximated by

wb(W, x̃, δ) ≈
∑

i∈W

( ∑

j∈W
x̃j<x̃i

wij(x̃i + δi − x̃j − δj)p +
∑

j 6∈W
x̃j<x̃i

wij(x̃i + δi − x̃j)p
)2/p

= wbp(W, x̃, δ),

(4.11)

where p should tend to infinity so that the longest edges become dominant as desired.
The quadratization of (4.11) is achieved by Taylor expansion up to the third term
as follows

wbp(W, x̃, δ) ≈ wbp(W, x̃, 0) +
∑

i∈W

∂wbp
∂δi

(W, x̃, 0)δi +
∑

i,j∈W

∂2wbp
∂δi∂δj

(W, x̃, 0)δiδj.

(4.12)
Thus, the system of equations to be solved is composed of q equations of the form
∂wbp
∂δi

= 0 and constraints (4.8). In our experiments, this minimization was applied
only as a postprocessing procedure right after completing the V -cycle for σ2(G).
Each i-th iteration of WM was done with sequentially growing even power parameter
p. Since the involved analytic derivatives of (4.12) are rather lengthy, it is easier
and more efficient to use numerical derivatives.

Simulated Annealing

A general method to escape false local minima and advance to lower costs is to
replace the strict minimization by a process that still accepts each candidate change
which lowers the cost, but also assigns a positive probability for accepting a can-
didate step which increases the cost of the arrangement. The probability assigned
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to a candidate step is equal to exp(−∆/T ), where ∆ > 0 measures the increase
in the arrangement cost and T > 0 is a temperature-like control parameter which
is gradually decreased toward zero. This process, known as Simulated Annealing
(SA) [67], in large problems would usually need to apply very gradual cooling (de-
crease of temperatures), making it extremely slow and inefficient for approaching
the global optimum.

In the multilevel framework, however, the role of SA is somewhat different. At
each level it is assumed that the global arrangement of aggregates has been inherited
from the coarser levels, and thus only local, small-scale changes are needed. For
that purpose, we have started at relatively high T , lowered it substantially at each
subsequent sweep, until window minimization is employed.

Repeated heating and cooling is successively employed for better search over the
local landscape. This search is further enhanced by the introduction of a “memory”-
like tool consisting of an additional permutation which stores the Best-So-Far (BSF)
observed arrangement, which is being occasionally updated by a procedure called
Lowest Common Configuration (LCC) [18]. LCC enables the systematic accumula-
tion of sub-permutations over a sequence of different arrangements, such that each
BSF sub-permutation exhibits the best (minimal) sub-order encountered so far. The
complete description of the SA and LCC algorithms is given in [92].

The entire disaggregation procedure for the minimum p-sum problem is summa-
rized below in Algorithm 2.

Algorithm 2: Disaggregation(coarse level C, fine level F)
Parameters: k2, k3 (see the Appendix)

Decide on the appropriate power p
Initialize F from C
Apply k2 sweeps of compatible relaxation on F
Apply k3 sweeps of Gauss-Seidel-like relaxation on F
Apply Window Minimization on F
Apply SA on F
If F is the finest level add postprocessing of minimization

Return the linear order of F

4.4 Results and Related Work

We have implemented and tested the algorithm using standard C++, LAPACK++
[84] and LEDA libraries [74] on Linux machine. The implementation is non-parallel
and not fully optimized.
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4.4.1 Previous work

The Minimum linear arrangement [92]. We have tested our algorithm on the
benchmarks provided by Petit [79] and Koren [68]. Most successful competitive
heuristics were : Spectral Sequencing, Optimally Oriented Decomposition Tree,
Multilevel based, Simulated Annealing, Genetic Hillclimbing and some of their com-
binations. The test suite provided in [79] contains rather small graphs for which our
algorithm gave the best costs (in almost all cases) in comparison to all previously
listed heuristics. The running time was so negligible, that comparison was mean-
ingless. The most interesting result was the comparison of our AMG-like algorithm
with the combination of spectral and multilevel approaches [68] on very large graphs
(introduced there). The fast version of our algorithm which run only a fifth of the
time of [68] exhibited an average improvement of 7%. Our slower but more evolved
version improved the costs of [68] by 12%. Other heuristics were not tested on this
suite, because of their higher than linear complexity. For complete list of results see
[92].
The Minimum 2-sum [93]. We have found only one article [50] with an im-
plemented algorithm and numerical results for the minimum 2-sum problem. The
algorithm is based on the spectral approach. Since their test suite is relatively small
to provide enough information regarding the problem, we have launched a new, much
larger test suite and compared our results to the spectral approach. Our multilevel
algorithm without any minimization at the finest level provided much better results
(better by an average of 31.4%) than the spectral one. Finally, the minimization
process applied after both strategies has proven itself to be good enough for both
of the approaches and almost equalized the results. For complete list of results see
[93].

4.4.2 Bandwidth

There are many different theoretical and practical results for the bandwidth problem,
e.g., [24, 80, 25, 42], to mention just a few. However, only a small number allow
tests on large inputs within a reasonable execution time, e.g., [7, 34, 35]. Since we
believe that a fair comparison of two heuristics should include final results as well
as running times, and since our algorithm is able to deal with very large instances,
we have thus chosen to test it on the test suites of [7, 34, 35] which include large
enough graphs to make the picture complete. These graphs are presented at the
leftmost three columns of Table 4.1.

We compare our results to the best results achieved in [7, 34, 35], presented at
column “bk∞” of Table 4.1. These results are the best obtained by testing many
(e.g., 19 in [35]) different algorithms, most of which are versions of the spectral
approach. That is, ordering the graph vertices according to the sorted coordinates
of the second eigenvector of the graph’s Laplacian A (a |V | × |V | matrix), whose
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terms are defined by

Aij =






−wij for ij ∈ E, i 6= j
0 for ij 6∈ E, i 6= j∑

k 6=iwik for i = j .
(4.13)

Our results (columns “M5”, “M10” and “M200”) are given as ratios to theirs, i.e.,
to column “bk∞”. “M5” introduces the results obtained by one V-cycle with five
WM at all levels (with q = 5, 10, 15, 20, 25, see Algorithm 1). Note that on the finest
level p is increased by two from one window size to another. We run the algorithm
one hundred times, each starts from a different permutation of the nodes. The best
obtained results show an improvement of about 23% over “bk∞”. The means of the
one hundred runs are worse than the corresponding “M5”-values by an average of
7%, while the standard deviation (around the means) is 4.7% on the average. We
have next tested the outcome of our algorithm with enlarged number of WM. The
V-cycle corresponding to “M10” uses ten WM at all levels (with window sizes 5 to
50 and increased p only at the finest level) and results with an improvement of 26%,
while “M200” has the same ten WM at each coarse level and 200 iterations at the
finest, where p is increased by two every four iterations of window sizes 5, 10, 20
and 40. (In fact, even though p in (4.2) should tend to infinity, in practice, the
minimization process has almost not progressed after p ≈ 100.) The “M200” shows
improvement of 34% on the average over “bk∞”. In these two versions, the means
of the hundred runs are worse than the corresponding “M10”(“M200”)-values by an
average of 6(4)%, while the standard deviation (around the means) is 3.6(2.3)% on
the average.

We have finally tested our algorithm on the five random graphs appearing in the
benchmark [79]. We compare a single run of our V-cycles with the results of the
exact spectral method and with those of the Cuthill-McKee permutation [36] which
was checked also in [35]. The results are summarized in Table 4.2 showing a clear
advantage to our multilevel approach even for those obviously unstructured random
graphs.

4.4.3 Workbound reduction

Continuing the comparison of multilevel and spectral frameworks started in [93],
we present our results for the workbound reduction problem compared to the best
known values from [34, 35]. The test suite graphs are the same as in the bandwidth
problem. In the second part of Table 1 we present the results we have obtained for
these graphs. In column “bkwb” we have extracted the best results reported in [34,
35]. These results were obtained by several modifications of the spectral sequencing
method. Then the results for two types of V-cycles (ten executions for each V-cycle)
are presented: the ”σ2(G)” V-cycle which is aimed at achieving fast performance
and thus somewhat compromising the quality of the arrangement cost by simply
approximating the workbound only with the σ2(G) solution; and the ”σ2(G)+WM”
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V-cycle which starts with the σ2(G) solution and then applies a postprocessing of 20
additional iterations with increased p of WM (of sizes 5,10,15,20,25,5,10,...) using
(4.4) and then ten sweeps of node by node minimization using (4.3). The latter
version runs longer but succeeds in finding lower cost arrangements. Our results
are presented in the form of ratio between our cost and the best known values
from [34, 35]. On the average they exhibit 18% improvement for σ2(G) and 31%
when the postprocessing is added. The means of the ten runs are worse than the
corresponding “σ2(G)”(“σ2(G)+WM”)-values by an average of 2.5(1.5)%, while the
standard deviation (around the means) is 1(0.5)% on the average.

Finally, we have also tried to add stochasticity by implementing the SA process.
Here as well as for the bandwidth problem we obtained no significant improvement,
i.e., no more than the observed variance. Still, as was shown in [92], SA can be
extremely important in other problems.

4.4.4 Additional experiments

We have tried to use the minimum 2-sum as a first approximation also for the band-
width as it was done for the workbound. However, this attempt was unsuccessful.
The nature of the bandwidth functional is somewhat different than other p-sum
problems or the workbound. It deals with the minimization of only several concrete
edges, those which are the longest, while in the p-sum and workbound it is necessary
to minimize many edges, at least one per node.

As an additional preliminary experiment aimed at checking whether the mini-
mum 2-sum may indeed provide a good first approximation for another functional,
we tested it for the wavefront reduction problem defined by

wf(G, π) =
(∑

i |fi|2
n

)1/2
, (4.14)

where fi = adj({π−1(1), ..., π−1(i)})⋃{π−1(i)} and adj(X) =
⋃
j∈X{k : kj ∈ E}\X.

We have compared our results with those of [59] obtained by a multilevel algorithm.
We have just evaluated for 15 graphs the wavefront functional on the arrangement
produced by the V-cycle with p = 2 and obtained similar results to those presented
in [59]. We emphasize that these results are prior to any postprocessing which would
involve minimization with the particular wavefront functional.

4.5 Conclusions

We have presented a variety of multilevel algorithms for the class of linear ordering
problems for general graphs. These algorithms are based on the general principle
that during coarsening each vertex may be associated to more than just one ag-
gregate according to some “likelihood” measure. The uncoarsening initialization,
which produces the first arrangement of the fine graph nodes, strongly relies on
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Table 4.1: Results.
Graph |V | |E| bk∞ M5 TM5

M10 M200 bkwb σ2 σ2+WM
3dtube 4.5E+04 1.6E+06 2334 0.89 11.00 0.87 0.81 1.48E+11 1.04 0.99
add20 2.4E+03 5.4E+03 711 0.60 0.03 0.55 0.50 9.78E+07 0.39 0.20
add32 5.0E+03 7.4E+03 669 0.03 0.05 0.03 0.03 1.67E+07 0.02 0.01
barth 6.7E+03 2.0E+04 200 0.76 0.12 0.72 0.64 4.09E+07 0.99 0.88
barth4 6.0E+03 1.7E+04 213 0.60 0.10 0.58 0.55 3.23E+07 0.76 0.71
barth5 1.6E+04 4.6E+04 370 0.65 0.30 0.63 0.57 1.89E+08 0.93 0.88
bcspwr08 1.6E+03 2.2E+03 131 0.63 0.03 0.63 0.53 1.10E+06 0.76 0.64
bcspwr09 1.7E+03 2.4E+03 123 0.68 0.07 0.65 0.57 1.18E+06 0.76 0.63
bcspwr10 5.3E+03 8.3E+03 288 0.68 0.18 0.63 0.52 1.43E+07 0.85 0.71
bcsstk12 1.4E+03 1.6E+04 109 0.61 0.10 0.61 0.57 4.29E+06 0.87 0.83
bcsstk13 2.0E+03 4.1E+04 546 0.69 0.20 0.64 0.60 1.63E+08 0.80 0.58
bcsstk24 3.6E+03 7.8E+04 227 0.79 0.29 0.80 0.79 7.10E+07 1.01 1.00
bcsstk29 1.4E+04 3.0E+05 838 0.68 1.48 0.67 0.63 1.09E+09 0.85 0.78
bcsstk30 2.9E+04 1.0E+06 2512 0.50 3.15 0.48 0.43 4.32E+09 0.91 0.67
bcsstk31 3.6E+04 5.7E+05 1104 1.14 3.50 1.03 0.78 1.97E+10 0.60 0.51
bcsstk32 4.5E+04 9.9E+05 2339 0.97 4.50 0.87 0.71 2.83E+10 0.61 0.47
bcsstk33 8.7E+03 2.9E+05 519 1.12 1.55 1.03 0.99 1.93E+09 0.98 0.87
bcsstk35 3.0E+04 7.1E+05 1764 0.69 3.16 0.66 0.55 1.00E+10 0.74 0.62
bcsstk36 2.3E+04 5.6E+05 1474 0.70 2.71 0.67 0.57 8.52E+09 0.74 0.66
bcsstk37 2.6E+04 5.6E+05 1373 0.75 3.06 0.70 0.59 1.45E+10 0.49 0.44
bcsstk38 8.0E+03 1.7E+05 669 0.64 0.60 0.58 0.55 4.52E+08 0.84 0.69
bcsstm13 6.5E+02 9.9E+03 171 0.62 0.06 0.62 0.60 6.50E+06 0.89 0.78
blckhole 2.1E+03 6.4E+03 105 1.15 0.13 1.11 0.96 8.91E+06 0.98 0.85
bus1138 1.1E+03 1.5E+03 106 0.61 0.06 0.59 0.51 5.52E+05 0.85 0.69
bus685 6.9E+02 1.3E+03 83 0.47 0.05 0.46 0.42 2.28E+05 0.82 0.70
can1054 1.1E+03 5.6E+03 121 0.74 0.06 0.73 0.67 2.59E+06 1.00 0.67
can1072 1.1E+03 5.7E+03 159 0.81 0.06 0.78 0.74 4.08E+06 0.90 0.55
can445 4.5E+02 1.7E+03 78 0.76 0.02 0.74 0.71 9.12E+05 0.93 0.80
can838 8.4E+02 4.6E+03 126 0.77 0.03 0.75 0.71 2.80E+06 0.98 0.66
ct20stif 5.2E+04 1.3E+06 3187 1.30 6.40 1.26 0.80 1.94E+11 0.38 0.29
dwt1007 1.0E+03 3.8E+03 38 0.76 0.07 0.76 0.74 4.63E+05 0.98 0.94
dwt2680 2.7E+03 1.1E+04 65 0.97 0.16 0.95 0.86 3.74E+06 1.00 0.94
dwt918 9.2E+02 3.2E+03 50 0.72 0.06 0.70 0.68 4.55E+05 0.92 0.85
ex27 9.7E+02 2.0E+04 128 0.96 0.05 0.96 0.95 5.81E+06 1.01 0.77
finan512 7.5E+04 2.6E+05 1331 0.91 2.65 0.87 0.84 6.19E+09 0.87 0.64
gearbox 1.5E+05 4.5E+06 6271 0.68 26.00 0.86 0.65 1.36E+12 0.57 0.42
gupta3 1.7E+04 4.7E+06 12535 0.70 68.00 0.70 0.66 3.26E+11 1.11 0.99
jagmesh1 9.4E+02 2.7E+03 27 1.19 0.04 1.19 1.11 5.38E+05 1.04 1.00
jagmesh9 1.3E+03 3.9E+03 40 0.98 0.08 0.98 0.98 9.82E+05 0.90 0.87
memplus 1.8E+04 4.2E+04 5747 0.85 0.16 0.81 0.59 7.48E+10 0.57 0.15
msc10848 1.1E+04 6.1E+05 1349 0.78 1.50 0.73 0.64 3.08E+09 0.96 0.62
msc23052 2.3E+04 5.6E+05 1524 0.70 2.14 0.64 0.56 8.00E+09 0.78 0.69
nasa1824 1.8E+03 1.9E+04 205 0.80 0.14 0.77 0.73 2.68E+07 1.03 0.93
nasa4704 4.7E+03 5.0E+04 348 0.67 0.39 0.64 0.60 1.36E+08 0.96 0.91
pwt 3.7E+04 1.4E+05 339 0.92 1.20 0.88 0.76 7.51E+08 0.93 0.89
pwtk 2.2E+05 5.7E+06 2190 0.89 31.00 0.86 0.77 2.27E+11 0.67 0.66
shuttleeddy 1.0E+04 4.7E+04 177 0.72 0.56 0.70 0.67 6.46E+07 0.83 0.74
skirt1 1.3E+04 9.2E+04 309 0.60 0.50 0.57 0.50 1.73E+08 0.31 0.26
sstmodel 2.7E+03 9.7E+03 83 0.92 0.13 0.90 0.81 4.72E+06 0.82 0.74
twotone 1.2E+05 9.4E+05 19538 0.77 16.00 0.74 0.67 4.43E+12 0.76 0.65
vibrobox 1.2E+04 1.7E+05 3961 0.60 1.80 0.56 0.46 2.70E+10 0.90 0.58
AVERAGE 0.77 0.74 0.66 0.82 0.69
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Table 4.2: Results for random graphs.
Graph |V | |E| Spectral Cuthill-McKee M5 M10 M200

randomA1 1.0E+03 5.0E+03 828 0.80 0.65 0.59 0.55
randomA2 1.0E+03 2.5E+04 969 0.92 0.91 0.88 0.84
randomA3 1.0E+03 5.0E+04 985 0.95 0.95 0.94 0.90
randomA4 1.0E+03 8.2E+03 855 0.89 0.83 0.75 0.69
randomG4 1.0E+03 8.2E+03 143 0.71 0.54 0.51 0.50

energy considerations (unlike usual interpolation in classical AMG). This initial or-
der is further improved by Gauss-Seidel-like relaxation, window minimization and
possibly by employing stochasticity, i.e., simulated annealing. The running time of
the algorithms is linear, thus it can be applied to very large graphs. In addition,
we have proposed two general principles that can be used for different functionals
: (1) a first approximation can be obtained from the arrangement produced by one
V-cycle of the minimum 2-sum problem instead of using the very popular spectral
approach; (2) the continuation approach in which functionals that contain an eval-
uation of power p are successively approximated by a sequence of similar but with
lower power functionals.

Since our algorithms were developed for practical purposes we compared them to
many different heuristics : Spectral Sequencing, Optimally Oriented Decomposition
Tree, Multilevel based, Simulated Annealing, Genetic Hillclimbing and other. In
almost all cases we observed significant improvement of the results by tens and
sometimes by hundreds percents. Our algorithms have proven themselves to be
very stable (i.e., small standard deviations) and of high quality both as a first
approximation (using “light” V-cycles) and as more aggressive energy minimizers
(with more “heavy” postprocessing).

We recommend our multilevel algorithms as a general practical method for solv-
ing linear ordering problems and as a fast and high-quality method for obtaining
first approximation for them. The implemented algorithm can be obtained at [90].

Appendix: Parameters

In order to control the running time of the algorithm it is important to decrease
the total number of edges of the constructed coarse graphs. This is achieved by the
following two parameters: the maximum allowed coarse neighborhood size r, which
restricts the allowed size |Ni| of the coarse neighborhood of a vertex i ∈ F by deleting
the weakest wij, j ∈ C; and the edge filtering threshold ǫ, which deletes every
relatively weak edge ij (from the created coarse graph) for which both wij < ǫ · si
and wij < ǫ · sj, where si =

∑
k wik.

The specific values of r and ǫ along with those of the three parameters controlling
Algorithms 1 and 2 are presented in Table 4.3. Note that these parameters are the
ones used only for the finest levels. As the coarse graphs become much smaller
they are accordingly increased. This hardly affects the entire running time of the
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Table 4.3: The parameters used in the V-cycle.
Parameter “Value” The increase

for level L
The coarse neighborhood size (r) 10 +log(R)

The edge filtering threshold (ǫ) 0.001 ·0.9log(R)

k1 used in the WM 5 +log(
√
R)

The number of sweeps of Compatible relaxation (k2) 10 +2 · L
The number of sweeps of Gauss-Seidel relaxation (k3) 10 +2 · L

algorithm but systematically improves the obtained results. In the last column of
Table 4.3 we specifically describe the increase introduced for each parameter as
a function of level L, which usually depends on the ratio R = max(1, |E0|/|EL|)
measuring the relative decrease of the number of edges at level L compared with
the original graph.

We tested many options for the window sizes in Algorithm 1. Usually these sizes
were relatively small and very robust to changes. In our implementation we used
WinSizes = {5, 10, 15, 20, 25, 30}, however similar results were obtained with other
sets of windows, for example, WinSizes = {5, 9, 17, 23, 29}.
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CHAPTER 5

Two-dimensional layout problems

The problems we will address in this section are as follows. We want to find an
optimal layout of a set of two-dimensional objects such that (a) the total length
of the connections between these objects will be minimal (b) the two-dimensional
space will be well utilized and (c) the overlapping between objects will be as little
as possible. This class of problems can be modeled by a graph in which every vertex
has a predefined area and each edge has a predefined weight. While the first and
the third conditions usually have a single meaning, the second requirement can be
concreted in different ways. We will precisely define the space utilization demand
in Section 5.4. Intuitively explaining, the second requirement will imply the space
use whose lack can cause various annoying inconsistencies between the sizes of space
and objects (see Figure 5).

While the minimization problem can be solved relatively easy, the space utiliza-
tion and non-overlapping conditions in this class of problems significantly increase
the complexity of the algorithms dealing with it. There are two usual strategies
to satisfy the non-overlapping condition that lead to economical space utilization:
force directed methods and penalty functions. The force directed methods [47, 43]
are based on a simulation of a related physical model known as the spring em-
bedder. Spring embedder algorithms simulate a physical model where objects and
connections represent various forces and the result is a drawing representing a con-
figuration of some, possibly local, minimum energy. The penalty function strategy
[73, 9] dictates to reinforce the minimization function with a penalty function which
pushes away too close neighbor objects by adding a large enough penalty term to
the energy.

These methods can have very different natures and formulations. Some of them
have proven themselves in solution quality while other in execution time. However,
there are two main disadvantages regarding both of them: (a) if the number of
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Figure 5.1: Usually, the graph ”snake” is presented by most of the graph drawing
algorithms as a line or chord (like the left hand part of the figure). In this case, when
the number of nodes is quite big, the viewable number of nodes must be very small
and the space will be utilized very inefficiently. Moreover, if the sizes of space and
vertices are fixed such a layout may be practically impossible. One of the possible
efficient space utilization for the graph ”snake” is presented at the right hand part
of the figure.

penalty components (or spring forces definitions) is too big (for example all pairs of
nodes) then the complexity necessarily becomes quadratic in the number of objects;
(b) otherwise, when too many components are not taken into account there can be
many unforeseen violations. Thus, in terms of graph model G = (V,E), in case (a)
both methods are of the complexity proportional to O(|V ||E|) or O(|V |2), which
makes the applications on large graphs very difficult.

In this section we propose a linear time strategy for the two-dimensional lay-
out problem which compactly utilizes a given space. The almost non-overlapping
condition will be achieved as a ”side effect” of the distribution of the objects over
the space instead of mentioning the non-overlapping rule (or force) explicitly for the
objects. The strategy is scalable and thus may be applied to large instances. We
will put a grid on the area over which the minimization has to be performed and
will demand from every square to contain not more than some amount of material,
e.g., no more than its area. The number of variables (which influences the running
time of the algorithm) is dependent only on the grid size.

There are many areas in which such algorithms could find themselves very useful.
We will mention here two of them: graph drawing and VLSI design.

5.1 Graph drawing

Graph drawing addresses the problem of constructing geometric representation of
graphs, and has important applications to many computer technologies. There are
many different demands for graph drawing problems like ”draw a graph with” (a)
minimum number of edge crossings; (b) minimum total edge length; (c) predefined
angular resolution, etc. (for a complete survey, see [9]). For some of the applica-
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tions two questions play extremely important role when the vertices have different
geometric representations (like non-uniform sized circles, rectangles or other forms).
The first question is concerning the non-overlapping constraint over all pairs of the
vertices, while the second refers to the correct utilization of the space (paper, draw-
ing window, etc.), since, it is important to be able to indeed draw the graphs within
its given frames. We should stress that the ability to achieve a compact picture
is of great importance, since area-efficient drawings are essential in practical visu-
alization applications where screen space is one of the most valuable commodities.
Today, the fastest algorithms for drawing graphs do not take into account the space
utilization condition. The most popular strategy which does address these questions
is the previously mentioned force directed method [43]. However, its running time
is still quadratic.

Another extension that includes graph drawing aspects is a representation of
higraphs. Higraphs, a combination and extension of graphs and Euler/Venn dia-
grams, were defined by Harel in [53]. Higraphs extend the basic structure of graph
and hypergraphs to allow vertices to describe inclusion relationships. Adjacency of
such vertices is used to denote set-theoretic Cartesian product. Higraphs have been
shown to be useful for the expression of many different semantics, and underlie many
visual languages, such as statecharts and object model diagrams. The well-known
force-directed method has been extended to enable handling the visualization of hi-
graphs [52]. For small-sized higraphs it has indeed yielded nice results, but due to
its high complexity, it poses efficiency problems when used for larger higraphs.

5.2 The placement problem

The electronics industry has achieved a phenomenal growth over the last two decades,
mainly due to the rapid advances in integration technologies, large-scale systems de-
sign - in short, due to the advent of VLSI. The number of applications of integrated
circuits in high-performance computing, telecommunications, and consumer elec-
tronics has been rising steadily, and at a very fast pace. Typically, the required
computational power of these applications is the driving force for the fast develop-
ment of this field.

The VLSI design starts from the algorithm that describes the behavior of the
target chip. First, the corresponding architecture of the system is defined. It is
mapped onto the chip surface by floorplanning. The next design evolution in the
behavioral domain defines finite state machines which are structurally implemented
with functional modules such as registers and arithmetic logic units. These modules
are then geometrically placed onto the chip surface using special tools for automatic
module placement followed by routing, with a goal of minimizing the interconnects
area and signal delays [31]. For a current most leading approaches in this area see
[88, 102, 28, 61, 63, 76, 72, 85, 69, 71, 21, 44, 101, 60, 58, 23] and for a most recent
survey on the placement techniques see [75].
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The automatic placement stage consists of two main stages : the global placement
and the detailed placement. The global placement assigns the modules to the chip
region so as to minimize a cost function based on the wirelength and assures that
the modules are distributed evenly among the entire chip region. To ensure that
the placement solution can be legalized to the detailed (i.e., overlap-free) placement
without significant cell movements, the global placement result should satisfy certain
area density constraints.

The global placement is one of the most challenging problems during VLSI layout
synthesis. The modules must be placed in such a way that the chip can be processed
at the detailed placement stage and then routed efficiently under many different
constraints. This should be accomplished in a reasonable computation time even
for circuits with millions of modules since it is one of the bottlenecks of the design
process.

Let us formulate one possible simplified (which is still very challenging) objective
function for global placement. The circuit is described by the set of modules M =
{µ1, ..., µN} and nets N = {ν1, ..., νN}. Every module µi occupies a non-zero area
and the coordinates of the module at the chip is interpreted as the coordinates of
its center of mass. Each net ν connects a subset of the modules Mν . Modules
and nets are represented by nodes and hyperedges, respectively, in the following
hypergraph model. Given a fixed rectangular region R (chip area) the modules
should be positioned inside this region. When the modules are positioned in R,
each net ν ∈ N is assigned a “bounding-box” wirelength estimation l(ν) which is
equal to the half-perimeter of the smallest rectangle circumscribing its modules :

l(ν) = (xmax(ν)− xmin(ν)) + (ymax(ν)− ymin(ν)) , (5.1)

where xmax(ν) denotes the maximum x-coordinate of any side of any module in net
ν (xmin(ν), ymax(ν) and ymin(ν) are defined similarly). In fact, this estimate is the
lower bound of the real wirelength. The corresponding wirelength estimation l for
the entire circuit is obtained by direct summation over all nets :

l =
∑

ν∈N

l(ν) . (5.2)

A more precise calculation of the wirelength can only be made after routing.

In order to simplify our task we will work with the graph model of the circuit.
The fact that a net may connect more than two cells implies that a graph model of
the circuit is inaccurate. However, graph approximations such as the clique model
we describe here are often used effectively for many purposes. In our model, the
circuit will be represented as a graph G = (V,E), where each node in V corresponds
to a unique module inM, i.e., V =M, while each net ν ∈ N generates a clique Cν
with the set of nodesMν and the set of edges Eν defined as

Eν = {ij : i, j ∈Mν and i 6= j} .
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Thus, each edge may be generated by several cliques more than once. The weight of
an edge ij generated by k cliques Cν , 1 ≤ ν ≤ k, is defined as wij =

∑k
ν=1 1/(|Mν |−

1). The desired position of the node i is denoted by (xi, yi). With these definitions
we formulate the quadratic objective function Φ :

Φ =
∑

ij∈E

wij

[
(xi − xj)2 + (yi − yj)2

]
,

which should be minimized subject to the set of appropriate constraints expressing
various goals such as the non-overlapping conditions, predefined possible layout
regions for certain modules, forbidden regions, etc. In our application, the set of
constraints will be responsible for uniformly fill the chip area, which will result with
the almost non-overlapping side effect. This quadratic function is used in many
placement methods. One of the reasons for using the quadratic objective function
has been that it is continuously differentiable and it can be minimized by solving a
system of linear equations.

5.3 General scheme

The overall algorithm for solving a simple two-dimensional layout problem consists
of two main parts : a) the exterior V-cycle for the repeated coarsening of the instance
graph (bold circles and lines, Figure 5.2) and b) the procedure for improving the
current layout inherited from a coarser level (dashed lines that start at each empty
circle, Figure 5.2). The coarsening part of the exterior V-cycle is of similar nature as
the weighted aggregation described in [87, 92, 93, 94]. The correction routine consists
of an iterative process of approximating the non-linear problem, each being solved
by an interior V-cycle. The general algorithm which has been developed by D. Ron
and A. Brandt serves as a basis for my project. The interior V-cycle from (b) (which
is the goal of my project) is intended for the correction of the initial approximation
for the 2D-layout problem which is inherited from the coarser graph. The new
algorithm presented here involves a different kind of constraints, i.e., inequality
constraints rather than equality constraints as explained below. In order to achieve a
uniform distribution of the vertices (explained below as equidensity constraints) and
simultaneous smooth corrections for the node locations (corrections that preserve
the basic structure inherited from the coarse graphs), we will discretize the given
drawing area and then will define a set of variables for both vertical and horizontal
corrections of the nodes locations. Then, each node will be moved according to the
relative influence of its neighbor corrections and a new layout will be obtained.

5.4 Problem formulation

Given an initial approximation of the Gi-th layout at level i, which is placed within
the given drawing domain (assumed to be rectangular), we will first put a grid
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Figure 5.2: An example of the general scheme.

over that domain and define a new problem (bellow in (5.3)). The discretization
is performed by a grid G with the set of points P(G), where |P(G)| = NG,x · NG,y

points and x, y correspond to the respective axes (see Figure 5.3). Denote by S(G)
the set of squares defined by G , clearly, |S(G)| = (NG,x − 1) · (NG,y − 1). The
points in P(G) are counted sequentially from 0 at (0, 0)-coordinate until |P(G)| − 1
at the (NG,x, NG,y)-coordinate. For every point p ∈ P(G) we define two variables Up
and Vp which correspond to the horizontal and vertical corrections of the (up to 4)
neighboring squares of G, respectively. For example, node j depicted in Figure 5.3
will get the horizontal correction α12,jU12+α13,jU13+α17,jU17+α18,jU18, where α12,j,
α13,j, α17,j and α18,j are the bilinear interpolation coefficients (explained later).

Let us formulate the minimization problem. For a node i we define the set of four
closest points (the corners) in P(G) by c(i) = {rt(i), rb(i), lt(i), lb(i)} (i.e., right-top,
right-bottom, left-top, left-bottom). Similarly, c(s) = {rt(s), rb(s), lt(s), lb(s)} are
the corner points of a square s ∈ S(G). The quadratic energy functional we would
like to minimize for U and V given a current layout (x̃, ỹ) of G (i.e., the coordinates
of node i are initialized with (x̃i, ỹi)) is

E(U, V ) =

∑

ij∈E

wij

[(
x̃i+

∑

p∈c(i)

αpiUp−x̃j−
∑

p∈c(j)

αpjUp

)2

+

(
ỹi+

∑

p∈c(i)

αpiVp−ỹj−
∑

p∈c(j)

αpjVp

)2]

(5.3)

where αpi are the bilinear interpolation coefficients. For example, in Figure 5.4 for
vertex i in square s these coefficients are defined as

αpi =






d1e2
(d1+d2)(e1+e2)

if p = rt(i)
d1e1

(d1+d2)(e1+e2)
if p = rb(i)

d2e2
(d1+d2)(e1+e2)

if p = lt(i)
d2e1

(d1+d2)(e1+e2)
if p = lb(i) .
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Figure 5.3: An example of a grid G with NG,x = NG,y = 5. The grid points and
squares are labeled by pi and bold numbers, respectively.

Function E should be minimized subject to a set of constraints (otherwise, all nodes
will coincide to a single point). The first type of constraints is called the equidensity
constraints, i.e., the constraints which will ensure the uniform infill of the drawing
area by the vertices. These constraints will replace the natural non-overlapping
constraints which prevent the vertices from superpositioning.

The equality version of the equidensity constraints has been recently formulated
and developed by D. Ron and A. Brandt. This project consists of the inequality
version of the constraints and represents an extension of their ideas and methods.
For the completeness of this chapter we will present both the equality and the
inequality types of the equidensity constraints. Let υ(i) be the area of vertex i.
Denote the area of square s by A(s) = wshs, where hs and ws are the height and
width of square s, respectively. Denote by Υ(s) the total area of the vertices in
grid square s, i.e., Υ(s) =

∑
i∈Vs

a(i, s), where Vs is the set of nodes inside s and
a(i, s) is the partial area of vertex i coincide with s, see Figure 5.5. Similarly, for
the right (left, top, bottom) neighbor square of s the total area and total area of
vertices within will be denoted by Ar(l,t,b)(s) and Υr(l,t,b)(s), respectively. The entire
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Figure 5.4: Bilinear interpolation.
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Figure 5.5: An example of a vertex that belongs to more than one square: the vertex
j is shared among squares 5, 6, 9 and 10. The filled part of j is a(j, 6).

constraint for a square s will be

eqd(s) =
Υ(s) + Υr(s)

A(s) +Ar(s)
hs
Urt(s) + Urb(s)

2
− Υ(s) + Υl(s)

A(s) +Al(s)
hs
Ult(s) + Ulb(s)

2
−

Υ(s) + Υt(s)

A(s) +At(s)
ws
Vrt(s) + Vlt(s)

2
+

Υ(s) + Υb(s)

A(s) +Ab(s)
ws
Vrb(s) + Vlb(s)

2
+ Υ(s) ≤ A(s) .

(5.4)

First four summands at the left hand side correspond to the approximate amount
of flow through the ”virtual” borders between squares and its neighbor squares as
shown in Figure 5.6. The main demand of the equidensity constraint is that the
total area of the vertices in square s will be less than or equal to A(s).

The constraints of the second kind are the boundary conditions. They forbid flow
across the boundary, i.e., it nullifies all boundary Up and Vp values that correspond
to flow across the boundary.
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We have started to develop the algorithm with equality constraints, i.e., when the
flow through the square plus its current amount of the material is equal to its area.
Given a current approximation x̃, the entire quadratic problem is the following:

minimize E(U, V )
subject to ∀s ∈ S(G) eqd(s) = A(s);

if p ∈ {0, . . . , NG,x − 1} ∪ {|P(G)| −NG,x, . . . , |P(G)| − 1} then Vp = 0;
if p(mod NG,x) = 0 or (p+ 1)(mod NG,x) = 0 then Up = 0.

(5.5)
We will simplify the formulation of (5.5) by the concatenation of the two vectors U

and V into one U = [{Ui}|P(G)|−1
i=0 | {Vi}|P(G)|−1

i=0 ] and its set of indexes will be denoted
by PU. From now on, we will refer to E and eqd in their previous meaning but with
the overall vector U, so

E(U) =
∑

i,j∈PU

qijUiUj +
∑

i∈PU

giUi + C ,

where C is a constant and qij, gi are the coefficients calculated directly from the
previous definition (5.3) of E. Similarly eqd should be redefined. Denote by λs,
s ∈ S(G) the Lagrange multiplier corresponding to the equidensity constraint of
square s. Let B(G) = BU(G) ∪ BV (G) be the set of indexes of U that correspond to
Up and Vp defined in the boundary constraints in (5.5), where

BV (G) = {p : p ∈ [0 . . . NG,x − 1] ∪ [|P(G)| −NG,x . . . |P(G)| − 1]}
BU(G) = {p+ |P(G)| : p(mod NG,x) = 0 or (p+ 1)(mod NG,x) = 0, 0 ≤ p < |P(G)|}.

Then the Lagrangian minimization functional is

L(U, λ, ζ) = E(U) +
∑

s∈S(G)

λs(eqd(s)−A(s)) +
∑

k∈B(G)

ζkUk , (5.6)

where ζk, k ∈ B(G), are the respective Lagrange multipliers. So, we are looking for a
critical point of the Lagrangian function, which is expressed by the system of linear
equations

∇L(U, λ, ζ) =




∇UL(U, λ, ζ)
∇λL(U, λ, ζ)
∇ζL(U, λ, ζ)



 = 0 . (5.7)

There are several reasons that may cause the singularity of (5.7). The first kind of
singularity can appear from possible empty squares. This can be treated by adding
a summand to (5.6) which minimizes the total sum of all corrections β

∑
iU

2
i , i.e.,

adds a 2β-term to the diagonal of ∇UL. This will prevent the inclusion of zero-rows
in ∇UL, while possibly also bound the size of each correction in the solver below.
Even if there is no singularity of the first kind the rank of ∇L(U, λ, η) is always less
than its size by 1. This kind of singularity arises from the equations of equidensity
constraints in (5.7). Their sum always equals zero. This is due to the fact that under
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Figure 5.6: Directions of material circulation for equidensity constraints.

the boundary constraints the total amount of in-flows is always equal to the total
amount of out-flows. In fact, the Lagrange summand for the equidensity constraints∑

s∈S(G) λs(eqd(s)−A(s)) could be replaced by

∑

s∈S(G)

(λs +K)(eqd(s)−A(s))

for any K without changing the minimization of L since

K
∑

s∈S(G)

(eqd(s)−A(s)) = 0 .

Thus, important are not the values of λs but only their differences, and the singular-
ity can be treated by an additional constraint, say

∑
s λs = 0. The additional term

for L(U, λ, ζ) is η
∑

s λs, where η is a “pseudo-Lagrange” multiplier. The following
proposition motivates the non-singularity of L with

∑
s λs = 0.

Lemma 5.4.1. Given a symmetric matrix An×n. If rank(A) = n−1 then rank(B) =
n+ 1, where B is the block matrix

B =

(
An×n x
xT 0

)
,

x ∈ NA \ {0}.

Proof. Let y = [y′ yn+1]
T be some vector in R

n+1, where y′ are the first n components
of y. We will prove that if By = 0 then y = 0. The vector By can be written in the
following block form

By =

(
Ay′ + yn+1x

xTy′

)
.
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Assume by negation that if y is the solution of By = 0 then not all components of
y vanish (otherwise rank(B) = n+ 1). The following sequence obliges yn + 1 to be
zero:

Ay′+yn+1x = 0 ⇒ Ay′ = −yn+1x ⇒ xTAy′ = −yn+1x
Tx ⇒ 0y′ = 0 = −yn+1x

Tx .

If yn+1 = 0 then necessarily Ay′ = 0. However, when y′ ∈ NA \ {0} (we omit the
case when y′ = 0) then y′ = αx, where α 6= 0. Thus,

By =

(
αAx+ yn+1x

αxTx

)

and since αxTx 6= 0 we obtain a contradiction with By = 0.

Let us finally redefine the pseudo-Lagrangian functional L for our problem

L(U, λ, η) =
∑

i,j∈PU

qijUiUj+
∑

i∈PU

giUi+β
∑

i∈PU

U2
i+
∑

s∈S(G)

λs(eqd(s)−A(s))+η
∑

s∈S(G)

λs .

(5.8)
Note that we have removed the constant C since it does not influence the minimiza-
tion process, as well as the boundary constraint summand

∑
k∈B(G) ζkUk since the

respective Uk can be directly replaced by 0 in E and eqd.
Assumption of the equality in the equidensity constraint formulation contradicts

the real world situation in problems like placement, graph drawing, etc., i.e., the
total (chip/drawing) area is always bigger than the total area of all the vertices
(or modules). Thus, since the scope of activity of this assumption is strictly non
local, we have removed it after receiving some positive results for the minimization
under equality constraints. Let us now define the new minimization problem under
inequality constraints

minimize E(U, V )
subject to ∀s ∈ S(G) eqd(s) ≤ A(s) + η;

if p ∈ BU(G) then Up = 0;
if p ∈ BV (G) then Vp = 0.

(5.9)

5.5 Coarsening scheme

When the geometry of the problem is known we can choose a coarser grid by elimi-
nating points in a geometrically-regular pattern as it presented in Figure 5.7. The
correction computed at the coarse grid points will be interpolated to the fine grid
in order to refine its current approximation. Let us introduce the notation distin-
guishing between fine and coarse level variables and functions. In this section we
suggest the coarsening scheme for the layout correction problem.

As stated previously, at each point p ∈ G (solid circles in Figure 5.7) two vari-
ables which correspond to the horizontal and vertical corrections of the layout in
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Figure 5.7: Standard geometric coarsening scheme. Each solid point contains two
variables U and V of the corresponding level. These variables determine the hori-
zontal and vertical corrections of the nodes positioned inside their neighbor squares,
respectively.

its neighboring squares are defined. By lower and upper case letters we will refer to
the variables, indexes and coefficients of the fine (ui, i, qj, etc.) and the coarse (UI ,
I, QJ , etc.) levels, respectively. The index letters f and c will be used to describe
the energy (E) and pseudo-Lagrangian (L) functions at the fine and coarse levels,
respectively.

Denote by Ef the energy function, i.e., the minimization part of the pseudo-
Lagrangian (5.8) at the fine level, i.e.,

Ef =
∑

ij

q̄ijuiuj +
∑

piui , (5.10)

where q̄ij (pi) are the coefficients1 of the second (first) order terms. Given a current
approximation ũi of the fine level variable ui and a correction inherited from the
coarse level variables UI , ui is refined by

ui = ũi +
∑

I∋i

αiIUI , (5.11)

where the notation
∑

I∋i means that the sum is running over all I which include i
and αiI are the interpolation coefficients defined by the standard two-dimensional
geometric coarse-to-fine projection operator ↑fc . In particular, if (for a matter of
example) we will refer to the grid point in Gf by two-index coordinate (2l, 2m) and
its corresponding coarse grid point in Gc will be refereed by (L,M) (see Figure 5.7),
then ↑fc can be written as

u2l,2m = ũ2l,2m + UL,M , (5.12)

u2l+1,2m = ũ2l+1,2m +
1

2
(UL,M + UL+1,M), (5.13)

u2l,2m+1 = ũ2l,2m+1 +
1

2
(UL,M + UL,M+1), (5.14)

u2l+1,2m+1 = ũ2l+1,2m+1 +
1

4
(UL,M + UL,M+1 + UL+1,M + UL+1,M+1). (5.15)

1In order to remove the additional coefficient 1
2 we will use ”bar” notation qij = 2q̄ij
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Let us formulate the transition phase between the fine level energy functional Ef to
the coarse variables representation:

Ef =
∑

ij

q̄ij(ũi +
∑

I∋i

αiIUI)(ũj +
∑

J∋j

αjJUJ) +
∑

i

pi(ũi +
∑

I∋i

αiIUI) =

=
∑

ij

q̄ij(ũiũj +
∑

J∋j

ũiαjJUJ +
∑

I∋i

ũjαiIUI +
∑

I∋i
J∋j

αiIαjJUIUJ) +
∑

i

pi(ũi +
∑

I∋i

αiIUI) =

=
∑

ij

q̄ijũiũj +
∑

ij

q̄ij
∑

J∋j

ũiαjJUJ +
∑

ij

q̄ij
∑

I∋i

ũjαiIUI+

+
∑

ij

q̄ij
∑

I∋i
J∋j

αiIαjJUIUJ +
∑

i

piũi +
∑

i

∑

I∋i

piαiIUI =

= C +
∑

I

(
2
∑

j
i∈I

q̄ijũjαiI +
∑

i∈I

piαiI
)
UI +

∑

IJ

(∑

i∈I
j∈J

q̄ijαiIαjJ
)
UIUJ =

= C +
∑

I

PIUI +
∑

IJ

Q̄IJUIUJ ,

where PI = 2
∑

j
i∈I

q̄ijũjαiI +
∑

i∈I piαiI , Q̄IJ =
∑

i∈I
j∈J

q̄ijαiIαjJ and the coarse level

energy function will be

Ec =
∑

IJ

Q̄IJUIUJ +
∑

I

PIUI .

In order to express a uniform distribution of the vertices over the drawing area,
for each square k at the fine level we define an equidensity equality or inequality
constraint eqd(k) of the form

∑
i akiui = bk or

∑
i akiui ≤ bk, respectively. The

coarse equidensity constraints are constructed in a geometric-pattern manner as
shown in Figure 5.8. Starting from a square (0, 0) the drawing area is filled by 2× 2
squares. Each four-fine-squares pattern will represent a coarse square K.

Let k (K) be the index that runs over squares at fine (coarse) level. The ex-
pression ”k ∈ K” will refer to the four fine squares that form a coarse square K.
The K-th equidensity constraint of the coarse level is defined by

∑
I AKIUI = BK

or
∑

I AKIUI ≤ BK when equality or inequality conditions are employed, respec-
tively. The coarse square equidensity constraint is formed by summation over the
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Figure 5.8: Constraints geometric coarsening. The equidensity constraints of ev-
ery four similarly patterned squares at the fine level form a respectively patterned
equidensity constraint of the coarse square.

four corresponding fine level squares
∑

k∈K

∑

i

akiui −
∑

k∈K

bk =
∑

k∈K

∑

i

aki(ũi +
∑

I∋i

αiIUI)−
∑

k∈K

bk

=
∑

k∈K

(∑

i

akiũi +
∑

i

aki
∑

I∋i

αiIUI
)
−
∑

k∈K

bk

=
∑

k∈K

∑

i

aki
∑

I∋i

αiIUI −BK

=
∑

I

∑

i∈I

∑

k∈K

akiαiIUI −BK

=
∑

I

AKIUI −BK ,

where AKI =
∑

i∈I

∑
k∈K akiαiI , and BK =

∑
k∈K(bk−

∑
i akiũi). Similarly (in case

of equality constraints), the additional η-constraint over all squares at the coarse
level is inherited from the fine level

∑
K DKΛK = 0, where DK =

∑
k∈K dk.

Residuals. In order to express a correction for the variables (given a current
approximation), let us define a set of coarse residuals for the minimization equations
and the equidensity constraints. If Lf is a pseudo-Lagrangian of the fine level system
defined by

Lf = Ef +
∑

k

λk(
∑

i

akiui − bk) + η
∑

k

dkλk .

then the ui-th residual of ∇Lf , where i ∈ {0 . . . 2|P(G)| − 1}, is

rE
i = −pi −

∑

j

qijũj −
∑

k

λ̃kaki.
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Thus, the residual corresponding to the variable UI of ∇Lc (where ∇Lc is the coarse
level system of equations) will be

RE
I =↑cf rE

i =
∑

i∈I

αiIr
E
i ,

where αiI are the anterpolation coefficients defined by ↑cf= (↑fc )T , see (26-29). The
residual of the k-th equidensity constraint is

reqd
k = bk −

∑

i

akiũi − η̃dk ,

where k runs over all fine squares. Therefore, the coarse equidensity residual of
square K will be Reqd

K =↑cf reqd
k =

∑
k∈K r

eqd
k . The residual of the η-constraint will

be
rη = −

∑

k

dkλ̃k = RH .

Full Approximation Scheme (FAS). FAS is a general multigrid strategy
usually applied to nonlinear problems. For our goal, we consider FAS-like coarsening
rules only partially. In fact, there is no need to construct FAS for the equality
equidensity constraints since it is a linear problem that can be solved by the regular
correction scheme. The FAS-like coarsening rules are needed and applied only on the
set of equations derived from the equidensity inequalities (which represent the non-
linear part of our problem). Thus, our scheme is a combination of the correction
sceme for the energy equations derived from 5.10-5.11 and FAS-like rules for the
remained equations. Denote by LP the linear part of the UI-th equation in the
system ∇Lc

LP =
∑

J

QIJUJ +
∑

K

ΛKAKI .

From the FAS rule for the I-th coarse equation LP = RE
I +Current approx. of the I-th LP

we can derive the I-th ∇Lc equation
∑

J

QIJUJ +
∑

K

ΛKAKI −RE
I −

∑

J

QIJU
0
J −

∑

K

Λ0
KAKI = 0,

where U0
J = 0 and Λ0

K = 1
4

∑
k∈K λ̃k. Similarly, the K-th square coarse equation for

the equality constraint will be
∑

I

AKIUI +HDK −Reqd
K −

∑

I

AKIU
0
I −H0DK = 0 (5.16)

with only one change of relationship = to ≤ for inequality case. The last equation
for the H-constraint will be

∑

K

DKΛK −RH −
∑

K

DKΛ0
K = 0.

The correction received from a coarse level for the Lagrange multipliers λk will be
λk = λ̃k + ΛK∋k − Λ0

K∋k.
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Figure 5.9: Example of a windowW : the filled squares are chosen to form a window.

5.6 Relaxation

In our problem the relaxation process is employed at two phases: (1) as the error’s
smoother of a given first approximation before the construction of the coarse level
system and (2) in order to improve the first solution obtained immediately after
interpolation from the coarse level. For this purpose we have developed the so
called Window relaxation procedure which extracts from the entire system small
subproblems related with m ×m squares and solves them by direct application of
some minimization method.

In fact, these subproblems are exactly the same quadratic minimization problems
under appropriate constraints designed for small windows of squares. Let us define
a window W = {s ∈ S(G)| all squares within a rectangle} as presented in Figure
5.9 and B(W) - the set of both horizontal and vertical correction variables indexes
on the boundary of W . In order to formulate the quadratic minimization problems
we

• fix all {ui|i 6∈ c̄(s), s ∈ W} at their current approximation,

• choose the set of equidensity constraints for the appropriate squares s ∈ W ,

• define the boundary conditions, such that there will be no correction movement
at the boundary of W , i.e., ui is fixed for i ∈ B(W) and

• solve the problem for W .

The running time of the entire relaxation process strongly depends on the algo-
rithm for solving one window. There exists many different versions of well known
algorithms for the quadratic minimization under linear inequality constraints (for
a survey see [3]). However, in order to keep the coefficient of the linear running
time low, we have implemented a simple algorithm for solving a single window, as
presented in SingleWindowSolver. There is no real demand to achieve the global
minimum in every window. Due to the multilevel nature, at each level we have to
achieve a small correction which reduces the energy and smooths the error. The
entire correction will be accumulated from all levels of the hierarchy.
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Our heuristics represents a simplified version of the active set method. The
algorithm is iterative. At each iteration t, for a given ũ we first extract the set
(denoted by St) of squares for which the respective inequality equidensity constraints
are violated or almost violated:

St = {s ∈ W | eqd(s) > A(s)− ǫ} ,

where ǫ is positive and sufficiently small. Then we will turn the inequality constraints
of St to equalities ignoring the other inequality constraints and formulate the pseudo-
Lagrangian function LW forW with fixed ui for i ∈ B(W). Similarly to (5.8), let UW

be the set of variables inside W with the respective set of indexes PUW
. For every

ui ∈ UW we define its correction variable δi and reformulate the pseudo-Lagrangian
as a function for the correction δi variables as follows

LW(u, δ, λ, η) =
∑

i,j∈PUW

qij(ũi + δi)(ũj + δj) +
∑

i∈PUW

j 6∈PUW

qij(ũi + δi)ũj +
∑

i∈PUW

gi(ũi + δi)+

β
∑

i∈PUW

(ũi + δi)
2 +

∑

s∈St

λs(eqd(s)−A(s)) + η
∑

s∈St

λs , (5.17)

where ũi is the current value of ui. Solving ∇LW = 0 we obtain the correction for
UW which confines the respective active set variables to the boundary of the equality
constraints manifold. However, while accepting this correction we can violate other
inequality constraints that were already satisfied at the iteration t − 1. Let us call
this set of new unsatisfied constraints St. One way to overcome this problem is
to accept only a partial correction εδi, i ∈ PUW

, where ε is the smallest number
which brings some constraint from St to equality. It is easy to see that accepting
the correction εδi does not violate other constraints (those which produce a larger
ε) from St. At this point we accept this partial correction and continue to the next
iteration t + 1 excluding from the redefined St the set of satisfied constraints from
St with positive Lagrange multipliers λs.

SingleWindowSolver(W , ũ)
begin
t = 0
Repeat until ”optimal enough” (see below)
St = {the violated equidensity constraints} \ {the satisfied constraints with λs > 0}
Solve ∇LW = 0 and extract the smallest ε
Accept the correction ũ = ũ+ εδ
t = t+ 1

end
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In order to achieve the correction for all variables, we will sequentially cover by
these windows the entire drawing area. For computational reasons we have chosen to
apply this relaxation for very small windows (of size 4× 4) with an overlap. For our
application we have chosen the red-black ordering of windows. First, all windows
at odd (red) positions are considered, then the windows at even (black) positions,
and finally the previous relaxations are repeated for windows shifted by half of their
size in both horizontal and vertical directions. In other words, the entire area is
covered three times during one relaxation sweep. Nevertheless, similar numerical
results have been obtained if the relaxation order was changed to the lexicographic
scan with the same half-window sized shifts, i.e., the horizontal and the vertical
overlapping.

The entire algorithm for the two-dimensional layout correction is summarized
below in Algorithm 2D-layout-correction. The superscript index in the following
procedures refers to the number of level.

2D-layout-correction(graph G, current layout x̄)
begin

Apply sufficiently many times
Construct and initialize G0, U0

Initialize the system of equations ∇L0

Define C0 be the set of equidensity constraints
ml-correction(G0, ∇L0, C0, U0)
Update x̄

Return x̄

ml-correction(Gi, ∇Li, Ci, U i)
begin

If Gi is small enough
Solve the problem exactly

Else
Set Ui = 0
Apply sufficiently many times Window relaxation
Construct and initialize Gi+1, U i+1

Initialize the system of equations ∇Li+1

Define Ci+1 be the set of equidensity constraints
ml-correction(Gi+1, ∇Li+1, Ci+1)
Interpolate from level i+ 1 to level i, i.e., U i =↑fc U i+1

Apply sufficiently many times Windows relaxation
Return U i

In spite of the promising results presented in the following section, the algorithm
has not yet been optimized. However, even now it is already clear that several



ON THE SINGLE WINDOW BOUNDARY CONDITIONS 99

parameters (which growth, certainly, influence the running time) can be kept very
small. For example: (a) the number of Window relaxation iterations can be fixed
between 1 and 3; (b) ”optimal enough” in SingleWindowSolver means less than
6 iterations and (c) the size of W in SingleWindowSolver is very robust, i.e., the
same results can be obtained with the sizes 4x4, 8x8 and 16x16.

5.7 On the single window boundary conditions

The boundary condition is very important component of the single window solver
since it can permit various types of the movement inside the window and over the
boundary. The multilevel nature of the entire scheme allows to perform only local
movements. Therefore, it is advisable to define the boundary conditions so that
the movement over the boundary will be minimized in order to ensure only local
operations. We have experimented with two types of boundary conditions:

1. B(W) - the set of both horizontal and vertical correction variables indexes on
the boundary of W ;

2. B(W) - the set of both horizontal and vertical correction variables indexes on
the boundary of W which directions are perpendicular to the corresponding
boundary.

5.8 Examples of graph drawing layout correction

As it was previously mentioned, the graph drawing problem is of interest for many
applications. Therefore, we have chosen to demonstrate the abilities of our algorithm
for this problem. In this section we will briefly present several results of the two-
dimensional layout correction algorithm. The set of examples is shown in Figures
5.11, 5.18 and 5.19, each organized in two columns. The initial and final layouts of
the graph are shown in the same row, in the left and the right columns, respectively.

We begin with a circle graph (Figure 5.11, row a) which is initially placed as
a straight line, such that its first and last vertices are at the opposite sides of the
drawing area. The difficulty of this example lies in the first relaxation. It will
randomly shift the vertices towards either sides of the area and the algorithm must
cope with this initial random disturbance. The second example consists of a mesh
graph with three holes (Figure 5.11, row b). It is intended to demonstrate that
the empty space stays empty and the energy does not increase. More complicated
examples are shown in Figure 5.11, rows c and d. The initial optimal positions of the
mesh’s vertices were randomly changed by independent shifts in different directions
within a distance d, where

d ≤
{

2ws in example c
4ws in example d.
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Let us call these meshes M1 and M2, respectively. While the correction of M1 is
looking really nice, the example of M2 demonstrates a weak point in our algorithm
which certainly must be improved. The initial layout c1 is much more complicated
than d2, where the desired final layout is similar to c2. Thus, by applying additional
V-cycles we can definitely come to a better solution and we can experimentally show
it. At this moment, this weak point of our algorithm is in the main driving routine
2D-layout-correction. This problem is discussed in Section 5.9.

A typical example of the energy behaviour is presented at Figures 5.12-5.14.
These figures refer to the mesh example at Figure 5.11-c. The general energy mini-
mization progrss is shown at Figure 5.12. In this example the driving routine consists
of the sequence of various grid size V-cycles (“V-cycles” axis). Each odd V-cycle
solves the correction problem for the 16x16 grid while even V-cycles improve the
previous iterations with the grid 32x32. In all our experiments every level of such
V-cycle (ml-correction scheme) contains only one iteration of Window relaxation
at the coarsening and the interpolation stages. Next two Figures 5.13 and 5.14
show an energy behaviour of Window relaxations (without V-cycles) for 16x16 grid
iterations and exchangable 16x16 and 32x32 grid sizes, respectively.

We have continued to analyze the behaviour of the algorithm on the compressed
mesh graph. The first result is presented in Figure 5.15. The lines shown in both
pictures are deviation vectors of graph nodes from their near-to-optimal2 placement.
The upper picture is almost filled by these vectors since all mesh nodes were con-
centrated at the bottom left corner. After several iterations of the algorithm, all
nodes have been moved to their near-to-optimal positions (see the bottom image)
and the deviations became very small.

More complicated example is shown in Figure 5.16 in which the 64x64 mesh
graph was not only compressed but also slightly randomly permuted and reinforced
by 50 additional randomly chosen diagonals (Figure 5.16-a). The final result of the
algorithm is presented in Figure 5.16-b where all vertices are placed almost at their
optimums. The graph of energy function convergence is shown in Figure 5.16-c.
After less than two FMG cycles the total energy was very close to its real minimum
and additional iterations have only slightly corrected the layout. Each point at the
horizontal axis in Figure 5.16-c corresponds to a V-cycle of 2-FMG driving routine.
Such driving routine works with the following sequence of V-cycles at scales: 2, 2,
4, 4, 8, 8, ..., 128, 128, 2, 2, 4,4, etc. . This 2-FMG cycle was also applied on the
64x64 compressed mesh with three holes. The initial and final layouts are presented
in Figures 5.17-a and 5.17-b, respectively.

Two additional examples contain the layout corrections for graphs whose vertices
have non-equal volumes (see Figures 5.18 and 5.19). In both cases the initial layout
of these graphs was random.

2In this case, the optimal placement is not that in which all vertices are at the respective mesh
positions but there exist better configurations like those with the rounded corners.
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Figure 5.10: Example of a cluster of the vertices with one vertex stackled aside.

5.9 Future work

The research reported here only scratches the surface of what is possible using the
multigrid algorithms for the constrained optimization problems. We have shown
only one application of this class of problems namely, the graph drawing layout
correction.

During the future work on the graph drawing application, it is very important
to improve the driving routine of the V-cycle. The iterative correction of the vertex
position represents a movement of this vertex. Each iteration prolongates the vertex
path by the short local movement towards the position which minimizes the energy
subject to the equidensity constraints. Sometimes, when the nodes are arranged
in dense clusters (see Figure 5.10), there is a difficulty when a vertex aspires to be
relocated from one side of this cluster to another, where the energy will be lower.
Similar situation (with only few stacked vertices) is shown in the right side of M2 in
Figure 5.11-d2. The problem can be easily explained: the existance of large amount
of material does not allow the vertex to pass through the cluster but only to bend
it at best. This problem can be treated by an adaptive V-cycle driving routine that
will be able to temporarily scale the vertex sizes and/or the grid. This can give the
vertex an opportunity to move between the vertices of the cluster. Let us summarize
the key goals of our future work:

• to define more precisely the ’stopping criteria’ for the main iterative processes;

• to automatically decide upon the starting grid size;

• to fix the desired size of the sufficient per vertex correction in ml-correction;

• to make the driving routine adaptive in the sense of dynamic changes for better
grid sizes, window sizes, etc.;

• to check the convergence speed of different Window relaxation schemes;
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• to check the infuence and the convergence speed of many non-linear V-cycles;

• to design a local relaxation for individual displacement of nodes;

• to enlarge the benchmark to more complicated examples.

Much more advanced goal consists of the formulation of the multigrid principles
on the general geometric constrained optimization problems.
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Figure 5.11: Examples for the 2D-layout of graphs with equal vertices.
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Figure 5.12: Energy behaviour of the mesh at Figuure 5.11-c.
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Figure 5.13: Energy behaviour of Window relaxation iterations (16x16 grid) of the
mesh at Figuure 5.11-c.
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Figure 5.14: Energy behaviour of Window relaxation iterations (16x16 and 32x32
grids) of the mesh at Figuure 5.11-c.
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Figure 5.15: An example for the 32x32 mesh layout.
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Figure 5.16: An example for the layout of the 64x64 mesh with additional random
edges.



FUTURE WORK 107

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7

8

9

10

11

(a)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

(b)

Figure 5.17: An example for the 64x64 holed mesh layout.



108 TWO-DIMENSIONAL LAYOUT PROBLEMS

Figure 5.18: An example for the 2D-layout of the graph with non-equal volumes.

Figure 5.19: An example for the 2D-layout of 5-level binary tree with non-equal
vertices.
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